Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2021, Vol. 8 Issue (2) : 302-313    https://doi.org/10.15302/J-FASE-2021385
RESEARCH ARTICLE
UNREDUCED MEGAGAMETOPHYTE FORMATION VIA SECOND DIVISION RESTITUTION CONTRIBUTES TO TETRAPLOID PRODUCTION IN INTERPLOIDY CROSSES WITH ‘ORAH’ MANDARIN (CITRUS RETICULATA)
Qiangming XIA1, Wei WANG1, Kaidong XIE1(), Xiaomeng WU1, Xiuxin DENG1, Jude W. GROSSER2, Wenwu GUO1()
1. Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
2. Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, USA.
 Download: PDF(1219 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• In addition to triploid progeny, tetraploid hybrids derived from the fertilization of 2n megagametophytes are frequently regenerated from 2x × 4x crosses that utilize ‘Orah’ mandarin as the female parent.

• Data here indicate that ‘Orah’ mandarin is a cultivar that readily produces 2n megagametophytes.

• Second division restitution is the mechanism underlying 2n megagametophyte formation in ‘Orah’ mandarin.

Seedless fruits are desirable in the citrus fresh fruit market. Triploid production via diploid × tetraploid interploidy crosses is thought to be the most efficient and widely-used strategy for the breeding of seedless citrus. Although ‘Orah’ mandarin has desirable organoleptic qualities, seeds in the fruits weaken its market competitiveness. To produce new seedless cultivars that are similar to ‘Orah’ mandarin, we performed three 2x × 4x crosses using ‘Orah’ mandarin as the seed parent to regenerate triploid plantlets. A total of 182 triploid and 36 tetraploid plantlets were obtained. By analyzing their genetic origins using nine novel single nucleotide polymorphism (SNP) markers, all of the triploids and tetraploids derived from these three crosses were proven to be hybrids. Also, we demonstrated that 2n megagametophyte formation in ‘Orah’ mandarin result in tetraploid production in these three interploidy crosses. These tetraploid plantlets were genotyped using eight pericentromeric SNP markers and nine centromere distal SNP markers. Based on the genotypes of the 2n megagametophytes, the parental heterozygosity rates in 16 SNP loci and all 2n megagametophytes were less than 50%, indicating that second division restitution was the mechanism underlying 2n megagametophyte formation at both the population and individual levels. These triploid hybrids enrich the germplasm available for seedless breeding. Moreover, the tetraploid hybrids are valuable as parents for ploidy breeding for the production of seedless citrus fruits.

Keywords Citrus      2n gamete      interploidy hybridization      pericentromeric SNP marker      second division restitution     
Corresponding Author(s): Kaidong XIE,Wenwu GUO   
Just Accepted Date: 03 February 2021   Online First Date: 15 March 2021    Issue Date: 13 July 2021
 Cite this article:   
Qiangming XIA,Wei WANG,Kaidong XIE, et al. UNREDUCED MEGAGAMETOPHYTE FORMATION VIA SECOND DIVISION RESTITUTION CONTRIBUTES TO TETRAPLOID PRODUCTION IN INTERPLOIDY CROSSES WITH ‘ORAH’ MANDARIN (CITRUS RETICULATA)[J]. Front. Agr. Sci. Eng. , 2021, 8(2): 302-313.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021385
https://academic.hep.com.cn/fase/EN/Y2021/V8/I2/302
Cross No. pollinated flowers No. fruits set No. seeds obtained No. seeds germinated No. plantlets obtained No. diploids No. triploids No. tetraploids
Dev. Undev. Dev. Undev.
Orah × PCS 210 79 323 930 115 271 145 37 90 18
Orah × PO 238 128 859 906 99 108 132 35 81 16
Orah × SP 263 80 490 511 101 87 88 75 11 2
Total 711 287 1672 2347 315 466 365 147 182 36
Tab.1  The fruit set and numbers of seeds and polyploids recovered from the 2x × 4x crosses
Fig.1  Embryo rescue, plant regeneration and transplantation for citrus triploid production. (a) Young fruits 85 d after pollination. (b) Germination of developed seeds after approximately two weeks of culturing in vitro on germination medium. (c) Germination of undeveloped seeds after about four weeks of culturing in vitro on germination medium. (d) Regeneration of shoots from embryoids after their transfer to the shoot-induction medium. (e) A shoot grafted in vitro to the rootstock (Poncirus trifoliata). (f) Transplanted seedlings in a greenhouse.
Fig.2  Ploidy determination for regenerated citrus plantlets using flow cytometry and chromosome counting. (a–c) Histograms of diploid progeny (peak= 50), triploid progeny (peak= 75) and tetraploid progeny (peak= 100). (d–f) Chromosome counting for diploid (2n= 2x= 18), triploid (2n= 3x= 27) and tetraploid (2n= 4x= 36) plantlets. Scale bars= 5 mm.
Fig.3  Determining the genetic origin of triploids and tetraploids using KASP genotyping and aa × bbbb type SNP markers. Genotyping plots of (a) 43 randomly selected triploid progeny and (b) 36 tetraploid progeny with SNP marker Chr2-25841537 demonstrating their hybrid origins. Green, blue, red and gray represent the genotypes of maternal parents, paternal parents, triploid or tetraploid progeny and negative controls, respectively.
SNP marker Orah (aa) Male parents (bbbb) NI abb aabb
Chr2-24850985 CC AAAA 79 43 36
Chr2-25841537 GG CCCC 79 43 36
Chr3-18395328 AA GGGG 78 43 35
Chr3-24832283 CC TTTT 79 43 36
Chr4-8664085 GG CCCC 77 42 35
Chr4-8689111 GG TTTT 79 43 36
Chr5-12876197 CC TTTT 79 43 36
Chr6-1932038 TT CCCC 79 43 36
Chr9-815315 AA GGGG 76 43 33
Tab.2  Genotypic analysis of nine SNP markers (aa × bbbb type) in the triploid and tetraploid hybrid populations
Fig.4  Determining the mechanism of 2n megagametophyte formation in the 36 tetraploids using KASP genotyping and ab × aaaa/bbbb type SNP markers. (a) Under pericenteomeric locus Chr5-17395118, the maternal genotype (green) is GA, the paternal genotype (blue) is GGGG, and the tetraploid plantlets (red) clustered with their parents; the genotypes of the tetraploids are GGAA and GGGG with a GG contribution from the paternal parent and therefore homozygous AA and GG for the 2n megagametophyte. (b) Under the centromere distal locus Chr5-24798525, the maternal genotype (green) is TC, the paternal genotype (blue) is TTTT, and the tetraploid plantlets (red) clustered into three groups; the genotypes of the tetraploids are TTCC, TTTT and TTTC with a TT contribution from the paternal parent and therefore homozygous CC, TT and TC for the 2n megagametophyte.
SNP
markers
Orah Male parents OPCS
1
OPCS
2
OPCS
3
OPCS
4
OPCS
5
OPCS
6
OPCS
7
OPCS
8
OPCS
9
OPCS
10
OPCS
11
OPCS
12
OPCS
13
OPCS
14
OPCS
15
OPCS
16
OPCS
17
OPCS
18
Het PHR
Chr1-12169985 GA GGGG GG AA GG GG AA AA GG GG GG AA AA GG GG AA GG AA AA GG 0 0
Chr3-7913461 GA GGGG GG AA GG GG AA AA GG AA AA AA AA GG AA GG AA GG GG GG 0 0
Chr5-17395118 GA GGGG GG AA AA GG AA GG AA AA GG AA AA GG AA GG AA GG GG AA 0 0
Chr5-18735709 TA TTTT TT TT AA TT TT AA TT TT TT TT TT AA TT AA TT TT TT TT 0 0
Chr6-5337355 TG TTTT TT TT GG GG GG TT GG TT TT TT GG GG TT TT GG GG GG TT 0 0
Chr7-20190172 CA CCCC CC AA CC AA AA CC AA AA CC CC CC CC CC AA CC AA AA AA 0 0
Chr8-7202641 AG AAAA AA AA GG AA GG AA AA AA GG GG AA GG AA AA GG GG GG GG 0 0
Chr9-8606082 GT GGGG TT GG GG GG TT TT GG GG GG TT GG TT TT GG TT GG TT GG 0 0
Chr5-1014992 CA CCCC AA CC AA AA CC AA AA AA AA AA AA AA AA CC AA CC AA AA 0 0
Chr5-1051787 AT AAAA TT AA AA AA AA TT TT TT AA TT TT AA AA AA AA AA AA AA 0 0
Chr5-1103777 TC TTTT TC TC TC TC TT TC TC TC TC TC TC CC TC TT TC TC TC TC 15 83.33
Chr5-1323430 CT CCCC TT CC CC CC CC TT TT TT TT TT TT CC CC CC CC CC CC TT 0 0
Chr5-1580076 TC TTTT CC TT CC CC TT CC CC CC CC CC CC CC CC TT CC TT CC TT 0 0
Chr5-22348846 GC GGGG GG GG GG CC CC GG CC CC CC CC GG GG GG CC GG CC GG CC 0 0
Chr5-24661722 AG AAAA GG AA GG GG GG GG GG GG AA GG GG GG GG AA GG AA GG AA 0 0
Chr5-24798525 TC TTTT TT TT TT TC TC TC TC CC TT TT TC TC TT TC TC CC TT TT 8 44.44
Chr5-26120337 CT CCCC CC CC TT TT CC TT TT TT TT CC TT TT TT CC TT CC TT CC 0 0
Het 1 1 1 2 1 2 2 1 1 1 2 1 1 1 2 1 1 1
PHR 5.88 5.88 5.88 11.76 5.88 11.76 11.76 5.88 5.88 5.88 11.76 5.88 5.88 5.88 11.76 5.88 5.88 5.88
Tab.3  Genotypes of 18 tetraploids from ‘Orah × PCS’ hybridization generated using eight pericentromeric SNP markers and nine centromere distal SNP markers
SNP markers Orah Male parents OPO1 OPO2 OPO3 OPO4 OPO5 OPO6 OPO7 OPO8 OPO9 OPO10 OPO11 OPO12 OPO13 OPO14 OPO15 OPO16 OSP1 OSP2 Het PHR
Chr1-12169985 GA GGGG GG GG AA GG AA AA AA AA GG GG AA AA GG GG AA GG AA AA 0 0
Chr3-7913461 GA GGGG AA AA GG AA GG GG GG AA GG GG GG AA AA GG GG AA GG GG 0 0
Chr5-17395118 GA GGGG AA AA GG AA GG AA GG AA AA GG GG AA GG AA AA GG AA AA 0 0
Chr5-18735709 TA TTTT AA AA TT AA TT AA AA AA TT TT TT AA TT AA TT TT TT TT 0 0
Chr6-5337355 TG TTTT TT TT TT GG TT GG GG TT TT GG TT GG GG GG TT GG GG GG 0 0
Chr7-20190172 CA CCCC CC CC CC AA CC CC AA CC CC AA CC CC CC AA AA AA CC CC 0 0
Chr8-7202641 AG AAAA AA AA AA AA GG AA GG AA AA AA AA GG GG AA AA GG GG GG 0 0
Chr9-8606082 GT GGGG GG GG GG TT TT GG GG GG TT TT TT GG GG GG TT GG GG GG 0 0
Chr5-1014992 CA CCCC CC AA AA CC CC CC CC CC CC AA AA CC AA CC AA CC CC AA 0 0
Chr5-1051787 AT AAAA AA AA AA AA AA AA AA AA TT AA AA AA AA AA AA AA AA AA 0 0
Chr5-1103777 TC TTTT TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TT TT TC 16 88.89
Chr5-1323430 CT CCCC CC CC CC CC CC CC CC CC CC TT CC CC CC CC CC CC CC CC 0 0
Chr5-1580076 TC TTTT TT CC CC TT TT TT TT TT TT CC CC TT CC TT CC TT TT CC 0 0
Chr5-22348846 GC GGGG GG CC CC GG GG GG GG GG GG CC GG GG GG GG CC CC CC GG 0 0
Chr5-24661722 AG AAAA AA GG AA AA AA AA AA AA AA AA GG AA GG AA GG GG GG GG 0 0
Chr5-24798525 TC TTTT TT TC CC TT TT TT TT TT TT CC TT TT TT TT TC TC TC TC 5 27.78
Chr5-26120337 CT CCCC CC TT CC CC CC CC CC CC CC TT TT CC TT CC CC TT CC CC 0 0
Het 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2
PHR 5.88 11.76 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 11.76 5.88 5.88 11.76
Tab.4  Genotypes of 18 tetraploids from ‘Orah × PO’ and ‘Orah × SP’ hybridizations generated using eight pericentromeric SNP markers and nine centromere distal SNP markers
1 L Brownfield, C Köhler. Unreduced gamete formation in plants: mechanisms and prospects. Journal of Experimental Botany, 2011, 62(5): 1659–1668
https://doi.org/10.1093/jxb/erq371 pmid: 21109579
2 C A Krug. Chromosome numbers in the subfamily Arantioideae, with special reference in the genus Citrus. Botanical Gazette, 1943, 104(4): 602–611
https://doi.org/10.1086/335173
3 P Aleza, J Cuenca, J Juárez, L Navarro, P Ollitrault. Inheritance in doubled-diploid clementine and comparative study with SDR unreduced gametes of diploid clementine. Plant Cell Reports, 2016, 35(8): 1573–1586
https://doi.org/10.1007/s00299-016-1972-4 pmid: 27038940
4 P Ollitrault, M A Germana, Y Froelicher, J Cuenca, P Aleza, R Morillon, J W Grosser, W W Guo. Ploidy Manipulation for citrus breeding, genetics, and genomics. In: Gentile A, La Malfa S, Deng Z, eds. The Citrus Genome. Springer, 2020, 75–105
5 P Ollitrault, D Dambier, F Luro, Y Froelicher. Ploidy manipulation for breeding seedless triploid citrus. In: Janick J, ed. Plant Breeding Reviews. Wiley, 2008, 30: 323–352
6 G R Recupero, G Russo, S Recupero. New promising Citrus triploid hybrids selected from crosses between monoembryonic diploid female and tetraploid male parents. HortScience, 2005, 40(3): 516–520
https://doi.org/10.21273/HORTSCI.40.3.516
7 P Aleza, J Juárez, J Cuenca, P Ollitrault, L Navarro. Extensive citrus triploid hybrid production by 2x × 4x sexual hybridizations and parent-effect on the length of the juvenile phase. Plant Cell Reports, 2012, 31(9): 1723–1735
https://doi.org/10.1007/s00299-012-1286-0 pmid: 22614256
8 K D Xie, H Q Wang, X P Wang, W J Liang, Z Z Xie, H L Yi, X X Deng, J W Grosser, W W Guo. Extensive citrus triploid breeding by crossing monoembryonic diploid females with allotetraploid male parents. Scientia Agricultura Sinica, 2013, 46(21): 4550–4557 (in Chinese)
9 K D Xie, X P Wang, H Q Wang, W J Liang, Z Z Xie, D Y Guo, H L Yi, X X Deng, J W Grosser, W W Guo. High efficient and extensive production of triploid Citrus plants by crossing polyembryonic diploids with tetraploids. Acta Horticulturae Sinica, 2014, 41(4): 613–620 (in Chinese)
10 K D Xie, D Y Yuan, W Wang, Q M Xia, X M Wu, C W Chen, C L Chen, J W Grosser, W W Guo. Citrus triploid recovery based on 2x × 4x crosses via an optimized embryo rescue approach. Scientia Horticulturae, 2019, 252: 104–109
https://doi.org/10.1016/j.scienta.2019.03.038
11 J Cuenca, Y Froelicher, P Aleza, J Juárez, L Navarro, P Ollitrault. Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv ‘Fortune’. Heredity, 2011, 107(5): 462–470
https://doi.org/10.1038/hdy.2011.33 pmid: 21587302
12 J M Kreiner, P Kron, B C Husband. Frequency and maintenance of unreduced gametes in natural plant populations: associations with reproductive mode, life history and genome size. New Phytologist, 2017, 214(2): 879–889
https://doi.org/10.1111/nph.14423 pmid: 28134436
13 P Aleza, J Cuenca, M Hernández, J Juárez, L Navarro, P Ollitrault. Genetic mapping of centromeres in the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes. BMC Plant Biology, 2015, 15(1): 80–93
https://doi.org/10.1186/s12870-015-0464-y pmid: 25848689
14 J Cuenca, P Aleza, J Juárez, A García-Lor, Y Froelicher, L Navarro, P Ollitrault. Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus. Scientific Reports, 2015, 5(1): 9897–9908
https://doi.org/10.1038/srep09897 pmid: 25894579
15 K D Xie, X P Wang, M K Biswas, W J Liang, Q Xu, J W Grosser, W W Guo. 2n megagametophyte formed via SDR contributes to tetraploidization in polyembryonic ‘Nadorcott’ tangor crossed by citrus allotetraploids. Plant Cell Reports, 2014, 33(10): 1641–1650
https://doi.org/10.1007/s00299-014-1643-2 pmid: 24972825
16 H Rouiss, J Cuenca, L Navarro, P Ollitrault, P Aleza. Tetraploid citrus progenies arising from FDR and SDR unreduced pollen in 4x × 2x hybridizations. Tree Genetics & Genomes, 2017, 13(1): 10–24
https://doi.org/10.1007/s11295-016-1094-8
17 H Rouiss, J Cuenca, L Navarro, P Ollitrault, P Aleza. Unreduced megagametophyte production in lemon occurs via three meiotic mechanisms, predominantly second-division restitution. Frontiers in Plant Science, 2017, 8: 1211–1227
https://doi.org/10.3389/fpls.2017.01211 pmid: 28747921
18 K D Xie, Q M Xia, J Peng, X M Wu, Z Z Xie, C L Chen, W W Guo. Mechanism underlying 2n male and female gamete formation in lemon via cytological and molecular marker analysis. Plant Biotechnology Reports, 2019, 13(2): 141–149
https://doi.org/10.1007/s11816-019-00525-4
19 G H Barry, F G Gmitter Jr, C X Chen, M L Roose, C T Federici, G T McCollum. Investigating the parentage of ‘Orri’ and ‘Fortune’ mandarin hybrids. Acta Horticulturae, 2015, (1065): 449–456
https://doi.org/10.17660/ActaHortic.2015.1065.55
20 W W Guo, D Prasad, P Serrano, F G Gmitter Jr, J W Grosser. Citrus somatic hybridization with potential for direct tetraploid scion cultivar development. Journal of Horticultural Science & Biotechnology, 2004, 79(3): 400–405
https://doi.org/10.1080/14620316.2004.11511780
21 J W Grosser, F G Gmitter Jr. Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell, Tissue and Organ Culture, 2011, 104(3): 343–357
https://doi.org/10.1007/s11240-010-9823-4
22 W W Guo, R C Wu, Y J Cheng, X X Deng. Production and molecular characterization of Citrus intergeneric somatic hybrids between red tangerine and citrange. Plant Breeding, 2007, 126(1): 72–76
https://doi.org/10.1111/j.1439-0523.2006.01315.x
23 S M Wang, H Lan, H H Jia, K D Xie, X M Wu, C L Chen, W W Guo. Induction of parthenogenetic haploid plants using gamma irradiated pollens in ‘Hirado Buntan’ pummelo (Citrus grandis [L.] Osbeck). Scientia Horticulturae, 2016, 207: 233–239
https://doi.org/10.1016/j.scienta.2016.05.028
24 Y J Cheng, W W Guo, H L Yi, X M Pang, X X Deng. An efficient protocol for genomic DNA extraction from Citrus species. Plant Molecular Biology Reporter, 2003, 21(2): 177–178
https://doi.org/10.1007/BF02774246
25 Q M Xia, L K Miao, K D Xie, Z P Yin, X M Wu, C L Chen, J W Grosser, W W Guo. Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling. Plant Cell Reports, 2020, 39(12): 1609–1622
https://doi.org/10.1007/s00299-020-02587-z pmid: 32897396
26 Q Xu, L L Chen, X Ruan, D Chen, A Zhu, C Chen, D Bertrand, W B Jiao, B H Hao, M P Lyon, J Chen, S Gao, F Xing, H Lan, J W Chang, X Ge, Y Lei, Q Hu, Y Miao, L Wang, S Xiao, M K Biswas, W Zeng, F Guo, H Cao, X Yang, X W Xu, Y J Cheng, J Xu, J H Liu, O J Luo, Z Tang, W W Guo, H Kuang, H Y Zhang, M L Roose, N Nagarajan, X X Deng, Y Ruan. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45(1): 59–66
https://doi.org/10.1038/ng.2472 pmid: 23179022
27 H Li, R Durbin. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010, 26(5): 589–595
https://doi.org/10.1093/bioinformatics/btp698 pmid: 20080505
28 H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, R Durbin. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16): 2078–2079
https://doi.org/10.1093/bioinformatics/btp352 pmid: 19505943
29 P Cingolani, A Platts, L Wang, M Coon, T Nguyen, L Wang, S J Land, X Lu, D M Ruden. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012, 6(2): 80–92
https://doi.org/10.4161/fly.19695 pmid: 22728672
30 J Cuenca, P Aleza, L Navarro, P Ollitrault. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny. Annual of Botany, 2013, 111(4): 731–742
https://doi.org/10.1093/aob/mct032 pmid: 23422023
31 A Blary, E Jenczewski. Manipulation of crossover frequency and distribution for plant breeding. Theoretical and Applied Genetics, 2019, 132(3): 575–592
https://doi.org/10.1007/s00122-018-3240-1 pmid: 30483818
32 J B Fernandes, P Wlodzimierz, I R Henderson. Meiotic recombination within plant centromeres. Current Opinion in Plant Biology, 2019, 48: 26–35
https://doi.org/10.1016/j.pbi.2019.02.008 pmid: 30954771
33 C B Dong, Y J Suo, X Y Kang. Assessment of the genetic composition of triploid hybrid Populus using SSR markers with low recombination frequencies. Canadian Journal of Forest Research, 2014, 44(7): 692–699
https://doi.org/10.1139/cjfr-2013-0360
34 H Liesebach, K Ulrich, D Ewald. FDR and SDR processes in meiosis and diploid gamete formation in poplars (Populus L.) detected by centromere-associated microsatellite markers. Tree Genetics & Genomes, 2015, 11(1): 801–811
https://doi.org/10.1007/s11295-014-0801-6
35 J Cuenca, P Aleza, A Garcia-Lor, P Ollitrault, L Navarro. Fine mapping for identification of Citrus alternaria brown spot candidate resistance genes and development of new SNP markers for marker-assisted selection. Frontiers in Plant Science, 2016, 7: 1948–1961
https://doi.org/10.3389/fpls.2016.01948 pmid: 28066498
36 X Wang, Y Xu, S Zhang, L Cao, Y Huang, J Cheng, G Wu, S Tian, C Chen, Y Liu, H Yu, X Yang, H Lan, N Wang, L Wang, J Xu, X Jiang, Z Xie, M Tan, R M Larkin, L L Chen, B G Ma, Y Ruan, X Deng, Q Xu. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics, 2017, 49(5): 765–772
https://doi.org/10.1038/ng.3839 pmid: 28394353
[1] FASE-21385-OF-XQM_suppl_1 Download
[1] Kejian WANG, Dongmei GUO, Yao ZHANG, Lie DENG, Rangjin XIE, Qiang LV, Shilai YI, Yongqiang ZHENG, Yanyan MA, Shaolan HE. Detection of Huanglongbing (citrus greening) based on hyperspectral image analysis and PCR[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 172-180.
[2] Yongjun DING, Won Suk LEE, Minzan LI. Feature extraction of hyperspectral images for detecting immature green citrus fruit[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 475-484.
[3] Manosh Kumar BISWAS, Christoph MAYER, Xiuxin DENG. Repeats in the transcribed regions: comprehensive characterization and comparison of Citrus spp.[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 421-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed