Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2021, Vol. 8 Issue (2) : 247-261    https://doi.org/10.15302/J-FASE-2021388
RESEARCH ARTICLE
APPLE SUMO E3 LIGASE MDSIZ1 NEGATIVELY REGULATES DROUGHT TOLERANCE
Baohua CHU, Jia SUN, Huan DANG, Ziqing MA, Shuang ZHAO, Qingmei GUAN(), Xuewei LI()
State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Apple Laboratory, College of Horticulture, Northwest A&F University, Yangling 712100, China.
 Download: PDF(3659 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MdSIZ1 RNAi transgenic apple trees are drought tolerance than wild type—GL-3.

MdSIZ1 RNAi plants get enhanced ability to keep water and scavenge ROS under drought conditions.

•MdSIZ1 may participate in apple drought tolerance by affecting ABA biosynthesis.

Drought stress typically causes heavy losses in apple production and uncovering the mechanisms by which apple tolerates drought stress is important in apple breeding. MdSIZ1 is a SUMO (small ubiquitin-like modifier) E3 ligase that promotes SUMO binding to substrate proteins. Here, we demonstrate that MdSIZ1 in apple has a negative relationship with drought tolerance. MdSIZ1 RNAi transgenic apple trees had a higher survival rate after drought stress. During drought stress they had higher leaf water potential, reduced ion leakage, lower H2O2 and malondialdehyde contents, and higher catalase activity. In addition, MdSIZ1 RNAi transgenic plants had a higher net photosynthetic rate during the latter period of drought stress. Finally, the transgenic apple trees also altered expression levels of some microRNAs in response to drought stress. Taken together, these results indicate that apple MdSIZ1 negatively regulates drought stress by enhancing leaf water-holding capacity and antioxidant enzyme activity.

Keywords apple      drought tolerance      gene expression      MdSIZ1     
Corresponding Author(s): Qingmei GUAN,Xuewei LI   
Just Accepted Date: 11 March 2021   Online First Date: 16 April 2021    Issue Date: 13 July 2021
 Cite this article:   
Baohua CHU,Jia SUN,Huan DANG, et al. APPLE SUMO E3 LIGASE MDSIZ1 NEGATIVELY REGULATES DROUGHT TOLERANCE[J]. Front. Agr. Sci. Eng. , 2021, 8(2): 247-261.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021388
https://academic.hep.com.cn/fase/EN/Y2021/V8/I2/247
Primer name Primer sequence (5′ to 3′) Purpose
MdSIZ1 RNAi F AAGCAGGGGAAGAAGCAG MdSIZ1 RNAi plants
MdSIZ1 RNAi R CAAGTTCCGCCACCTGT MdSIZ1 RNAi plants
MdSIZ1 qPCR F GACGACTGGATCTCTCTTCGAC qRT-PCR analysis
MdSIZ1 qPCR R CTTTGTTAGACCTAACTTCATCAGTTCC qRT-PCR analysis
MdSIZ1-like qPCR F GACGACTGGATCTCTCTTCGAC qRT-PCR analysis
MdSIZ1-like qPCR R CTTTGTTAGACCTAACTTCATCAGTTCC qRT-PCR analysis
MdDREB2A qPCR F GAGTCTGCCGCACATGGA qRT-PCR analysis
MdDREB2A qPCR R GTTGTAACCTACGTCTCCGGAT qRT-PCR analysis
MdPIP1;3 qPCR F CCAAGAGGAATGCCAGAGAC qRT-PCR analysis
MdPIP1;3 qPCR R GCAAGCATCATTGTTTCCCC qRT-PCR analysis
MdNCED3 qPCR F CAGCTACAGGTACACGGGTT qRT-PCR analysis
MdNCED3 qPCR R TGTGGCACTGGCTTTGAAGA qRT-PCR analysis
mdm-miR168 qPCR F TCGCTTGGTGCAGGTCG qRT-PCR analysis
mdm-miR172 qPCR F GAGAATCTTGATGATGCTGCAT qRT-PCR analysis
mdm-miR393 qPCR F TCCAAAGGGATCGCATTGATCC qRT-PCR analysis
mdm-miR408 qPCR F GCGATGCACTGCCTCTTC qRT-PCR analysis
stem-loop Universal R GTGCAGGGTCCGAGGT qRT-PCR analysis
MdMDH qPCR F CGTGATTGGGTACTTGGAAC qRT-PCR analysis
MdMDH qPCR R TGGCAAGTGACTGGGAATGA qRT-PCR analysis
Tab.1  Primers used in this study
Fig.1  Protein alignment of MdSIZ1, MdSIZ1-like and AtSIZ1. (a) Protein alignment of MdSIZ1 and AtSIZ1. (b) Protein alignment of MdSIZ1-like and AtSIZ1. Sequences of MdSIZ1 and MdSIZ1-like were obtained from the Malus× domestica (GDDH13 v1.1 genome) and AtSIZ1 (accession NM_125434) from NCBI. Yellow, green and red boxes indicate the SAP, PHD, and SP-RING finger domains, respectively.
Fig.2  Heat map of MdSIZ1 and MdSIZ1-like expression (FPKM) in different tissues and under abiotic stress. Higher transcript levels are shown in red and lower transcript levels in blue. (a) Three-month-old Malus prunifolia seedlings were used for RNA-seq measurement of gene expression in different tissues and under abiotic stresses. (b) For cold stress, the seedlings were exposed to 4°C for 3 h in a growth chamber before the leaves were harvested. For heat stress, the seedlings were exposed to 45°C for 30 min in a growth chamber, and for drought stress, water was withheld from the seedlings for 6 d.
Fig.3  Identification of MdSIZ1 RNAi transgenic plants. (a) Detection of MdSIZ1 RNAi plants at the DNA level. M500, DNA Marker 500; PC, positive control with MdSIZ1-pK7GWIWG2D as a template. A sequence from the CaMV 35S promoter was used as the forward primer and a sequence of MdSIZ1 RNAi was used as the reverse primer. Transcript levels of MdSIZ1 (b) and MdSIZ1-like (c) in MdSIZ1 RNAi plants. Data are means±SD (n = 3). Student’s t-test: *, P<0.05; **, P<0.01; ***, P<0.001.
Fig.4  Drought tolerance of MdSIZ1 transgenic apple plants under drought stress conditions. (a) Morphological characteristics of GL-3 and MdSIZ1 RNAi transgenic apple plants in response to drought stress. Three-month-old plants were exposed to drought for 21 d, then reirrigated for 7 d. (b) Survival rate of plants shown in (a). Thirty plants per line were used to analyze survival rate. Data are means±SD (n = 30). Student’s t-test: *, P<0.05; **, P<0.01.
Fig.5  Water deficit levels of MdSIZ1 transgenic plants in response to drought stress. (a) Leaf relative water content. (b) Leaf water potential. Data are means±SD (n = 10). Student’s t-test: *, P<0.05; **, P<0.01.
Fig.6  The membrane integrity of MdSIZ1 transgenic plants in response to drought stress. (a) Leaf ion leakage and (b) MDA content in leaves. Data are means±SD (n = 10). Student’s t-test: *, P<0.05; **, P<0.01.
Fig.7  Photosynthetic capacity and water use efficiency of GL-3 and MdSIZ1 RNAi plants after drought stress. (a) Net photosynthetic rate and (b) water use efficiency. Data are means±SD (n = 10). Student’s t-test: *, P<0.05; **, P<0.01.
Fig.8  MdSIZ1 RNAi plants have higher scavenging ability for hydrogen peroxide (H2O2) and superoxide (O2) under drought stress conditions. (a) Results from staining to detect H2O2 and O2 in leaves of MdSIZ1 RNAi and GL-3 plants exposed to drought treatment for 21 d. (b) H2O2 content in leaves. (c) Catalase activity (CAT). (d) Peroxidase activity (POD). (e) Staining of O2 in MdSIZ1 RNAi and GL-3 plants under drought stress. (f) O2 content in leaves. H2O2 and O2 were stained with DAB and NBT, respectively. Data are means±SD (n = 10). Student’s t-test: *, P<0.05; **, P<0.01.
Fig.9  ABA response and content in MdSIZ1 RNAi transgenic plants and GL-3. (a) ABA content in GL-3, MdSIZ1 RNAi plants under control and dehydration conditions. Error bars indicate standard deviation (n = 8). (b) Representative images of stomata of GL-3 and MdSIZ1 transgenic plants in response to ABA treatment. (c) Stomatal aperture of GL-3 and MdSIZ1 transgenic plants under ABA treatment. 10 leaves were used, and at least 40 stomatal apertures were measured for each treatment. Student’s t-test: *, P<0.05; **, P<0.01; and ***, P<0.001.
Fig.10  Transcript levels of drought-responsive genes in GL-3 and MdSIZ1 RNAi plants under drought stress. (a) MdDREB2A. (b) MdPIP1;3. (c) MdNCED3. Data are mean±SD (n = 3). Student’s t-test: *, P<0.05; **, P<0.01.
Fig.11  Transcript levels of drought-responsive microRNAs in GL-3 and MdSIZ1 RNAi plants under drought stress. (a) mdm-miR168. (b) mdm-miR172. (c) mdm-miR393. (d) mdm-miR408. Data are means±SD (n = 10). Student’s t-test: *, P<0.05; **, P<0.01.
1 L T Bertolino, R S Caine, J E Gray. Impact of stomatal density and morphology on Water-Use Efficiency in a changing world. Frontiers in Plant Science, 2019, 10: 225
https://doi.org/10.3389/fpls.2019.00225 pmid: 30894867
2 C D Allen, A K Macalady, H Chenchouni, D Bachelet, N McDowell, M Vennetier, T Kitzberger, A Rigling, D D Breshears, E H Hogg, P Gonzalez, R Fensham, Z Zhang, J Castro, N Demidova, J H Lim, G Allard, S W Running, A Semerci, N Cobb. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259(4): 660–684
https://doi.org/10.1016/j.foreco.2009.09.001
3 D Geng, P Chen, X Shen, Y Zhang, X Li, L Jiang, Y Xie, C Niu, J Zhang, X Huang, F Ma, Q Guan. MdMYB88 and MdMYB124 enhance drought tolerance by modulating root vessels and cell walls in apple. Plant Physiology, 2018, 178(3): 1296–1309
https://doi.org/10.1104/pp.18.00502 pmid: 30190418
4 X Sun, P Wang, X Jia, L Huo, R Che, F Ma. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnology Journal, 2018, 16(2): 545–557
https://doi.org/10.1111/pbi.12794 pmid: 28703378
5 Y Li, Y Tan, Y Shao, M Li, F Ma. Comprehensive genomic analysis and expression profiling of diacylglycerol kinase gene family in Malus prunifolia (Willd.) Borkh. Gene, 2015, 561(2): 225–234
https://doi.org/10.1016/j.gene.2015.02.029 pmid: 25688881
6 X Li, P Chen, Y Xie, Y Yan, L Wang, H Dang, J Zhang, L Xu, F Ma, Q Guan. Apple SERRATE negatively mediates drought resistance by regulating MdMYB88 and MdMYB124 and microRNA biogenesis. Horticulture Research, 2020, 7: 98
https://doi.org/10.1038/s41438-020-0320-6 pmid: 32637126
7 C W Lim, W Baek, J Jung, J H Kim, S C Lee. Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences, 2015, 16(7): 15251–15270
https://doi.org/10.3390/ijms160715251 pmid: 26154766
8 B R Acharya, S M Assmann. Hormone interactions in stomatal function. Plant Molecular Biology, 2009, 69(4): 451–462
https://doi.org/10.1007/s11103-008-9427-0 pmid: 19031047
9 K Miura, H Okamoto, E Okuma, H Shiba, H Kamada, P M Hasegawa, Y Murata. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant Journal, 2013, 73(1): 91–104
https://doi.org/10.1111/tpj.12014 pmid: 22963672
10 D Geng, X Shen, Y Xie, Y Yang, R Bian, Y Gao, P Li, L Sun, H Feng, F Ma, Q Guan. Regulation of phenylpropanoid biosynthesis by MdMYB88 and MdMYB124 contributes to pathogen and drought resistance in apple. Horticulture Research, 2020, 7(1): 102
https://doi.org/10.1038/s41438-020-0324-2 pmid: 32637130
11 J J Fischer, P H Beatty, A G Good, D G Muench. Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Science, 2013, 210: 70–81
https://doi.org/10.1016/j.plantsci.2013.05.009 pmid: 23849115
12 P H Castro, R M Tavares, E R Bejarano, H Azevedo. SUMO, a heavyweight player in plant abiotic stress responses. Cellular and Molecular Life Sciences, 2012, 69(19): 3269–3283
https://doi.org/10.1007/s00018-012-1094-2 pmid: 22903295
13 L Gong, W K Ji, X H Hu, W F Hu, X C Tang, Z X Huang, L Li, M Liu, S H Xiang, E Wu, Z Woodward, Y Z Liu, Q D Nguyen, D W Li. Sumoylation differentially regulates Sp1 to control cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): 5574–5579
https://doi.org/10.1073/pnas.1315034111 pmid: 24706897
14 G Gill. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes & Development, 2004, 18(17): 2046–2059
https://doi.org/10.1101/gad.1214604 pmid: 15342487
15 Y Wang, I Ladunga, A R Miller, K M Horken, T Plucinak, D P Weeks, C P Bailey. The small ubiquitin-like modifier (SUMO) and SUMO-conjugating system of Chlamydomonas reinhardtii. Genetics, 2008, 179(1): 177–192
https://doi.org/10.1534/genetics.108.089128 pmid: 18493050
16 Y Liu, D Liu, C Shen, S Dong, X Hu, M Lin, X Zhang, C Xu, J Zhong, Y Xie, C Zhang, D Wang, X Liu. Construction and characterization of a class-specific single-chain variable fragment against pyrethroid metabolites. Applied Microbiology and Biotechnology, 2020, 104(17): 7345–7354
https://doi.org/10.1007/s00253-020-10728-3 pmid: 32666189
17 L J Zhou, C L Zhang, R F Zhang, G L Wang, Y Y Li, Y J Hao. The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H+-ATPase activity and iron homeostasis. Plant Physiology, 2019, 179(1): 88–106
https://doi.org/10.1104/pp.18.00289 pmid: 30333149
18 X L Lin, D Niu, Z L Hu, D H Kim, Y H Jin, B Cai, P Liu, K Miura, D J Yun, W Y Kim, R Lin, J B Jin. An Arabidopsis SUMO E3 ligase, SIZ1, negatively regulates photomorphogenesis by promoting COP1 activity. PLOS Genetics, 2016, 12(4): e1006016
https://doi.org/10.1371/journal.pgen.1006016 pmid: 27128446
19 D Niu, X L Lin, X Kong, G P Qu, B Cai, J Lee, J B Jin. SIZ1-Mediated SUMOylation of TPR1 suppresses plant immunity in Arabidopsis. Molecular Plant, 2019, 12(2): 215–228
https://doi.org/10.1016/j.molp.2018.12.002 pmid: 30543996
20 Y Liu, J Lai, M Yu, F Wang, J Zhang, J Jiang, H Hu, Q Wu, G Lu, P Xu, C Yang. The Arabidopsis SUMO E3 ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation. Plant Cell, 2016, 28(9): 2225–2237
https://doi.org/10.1105/tpc.16.00439 pmid: 27492969
21 T Ishida, M Yoshimura, K Miura, K Sugimoto. MMS21/HPY2 and SIZ1, two Arabidopsis SUMO E3 ligases, have distinct functions in development. PLoS One, 2012, 7(10): e46897
https://doi.org/10.1371/journal.pone.0046897 pmid: 23056518
22 M S Cheong, H C Park, M J Hong, J Lee, W Choi, J B Jin, H J Bohnert, S Y Lee, R A Bressan, D J Yun. Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes. Plant Physiology, 2009, 151(4): 1930–1942
https://doi.org/10.1104/pp.109.143719 pmid: 19837819
23 V Hammoudi, L Fokkens, B Beerens, G Vlachakis, S Chatterjee, M Arroyo-Mateos, P F K Wackers, M J Jonker, H A van den Burg. The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth. PLOS Genetics, 2018, 14(1): e1007157
https://doi.org/10.1371/journal.pgen.1007157 pmid: 29357355
24 T C Rytz, M J Miller, F McLoughlin, R C Augustine, R S Marshall, Y T Juan, Y Y Charng, M Scalf, L M Smith, R D Vierstra. SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell, 2018, 30(5): 1077–1099
https://doi.org/10.1105/tpc.17.00993 pmid: 29588388
25 H Wang, R Sun, Y Cao, W Pei, Y Sun, H Zhou, X Wu, F Zhang, L Luo, Q Shen, G Xu, S Sun. OsSIZ1, a SUMO E3 ligase gene, is involved in the regulation of the responses to phosphate and nitrogen in rice. Plant & Cell Physiology, 2015, 56(12): 2381–2395
https://doi.org/10.1093/pcp/pcv162 pmid: 26615033
26 C C Chen, Y Y Chen, I C Tang, H M Liang, C C Lai, J M Chiou, K C Yeh. Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance. Plant Physiology, 2011, 156(4): 2225–2234
https://doi.org/10.1104/pp.111.178996 pmid: 21632972
27 R Catala, J Ouyang, I A Abreu, Y Hu, H Seo, X Zhang, N H Chua. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell, 2007, 19(9): 2952–2966
https://doi.org/10.1105/tpc.106.049981 pmid: 17905899
28 J Y Kim, J T Song, H S Seo. Post-translational modifications of Arabidopsis E3 SUMO ligase AtSIZ1 are controlled by environmental conditions. FEBS Open Bio, 2017, 7(10): 1622–1634
https://doi.org/10.1002/2211-5463.12309 pmid: 28979848
29 K Miura, J Lee, J B Jin, C Y Yoo, T Miura, P M Hasegawa. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13): 5418–5423
https://doi.org/10.1073/pnas.0811088106 pmid: 19276109
30 J B Jin, Y H Jin, J Lee, K Miura, C Y Yoo, W Y Kim, M Van Oosten, Y Hyun, D E Somers, I Lee, D J Yun, R A Bressan, P M Hasegawa. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant Journal, 2008, 53(3): 530–540
https://doi.org/10.1111/j.1365-313X.2007.03359.x pmid: 18069938
31 J Lee, J Nam, H C Park, G Na, K Miura, J B Jin, C Y Yoo, D Baek, D H Kim, J C Jeong, D Kim, S Y Lee, D E Salt, T Mengiste, Q Gong, S Ma, H J Bohnert, S S Kwak, R A Bressan, P M Hasegawa, D J Yun. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant Journal, 2007, 49(1): 79–90
https://doi.org/10.1111/j.1365-313X.2006.02947.x pmid: 17163880
32 S Zhang, K Zhuang, S Wang, J Lv, N Ma, Q Meng. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. Journal of Integrative Plant Biology, 2017, 59(2): 102–117
https://doi.org/10.1111/jipb.12514 pmid: 27995772
33 N Esmaeili, X Yang, Y Cai, L Sun, X Zhu, G Shen, P Payton, W Fang, H Zhang. Co-overexpression of AVP1 and OsSIZ1 in Arabidopsis substantially enhances plant tolerance to drought, salt, and heat stresses. Scientific Reports, 2019, 9(1): 7642
https://doi.org/10.1038/s41598-019-44062-0 pmid: 31113977
34 N Mishra, L Sun, X Zhu, J Smith, A Prakash Srivastava, X Yang, N Pehlivan, N Esmaeili, H Luo, G Shen, D Jones, D Auld, J Burke, P Payton, H Zhang. Overexpression of the Rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions. Plant & Cell Physiology, 2017, 58(4): 735–746
https://doi.org/10.1093/pcp/pcx032 pmid: 28340002
35 R F Zhang, Y Guo, Y Y Li, L J Zhou, Y J Hao, C X You. Functional identification of MdSIZ1 as a SUMO E3 ligase in apple. Journal of Plant Physiology, 2016, 198: 69–80
https://doi.org/10.1016/j.jplph.2016.04.007 pmid: 27152458
36 Y Xie, P Chen, Y Yan, C Bao, X Li, L Wang, X Shen, H Li, X Liu, C Niu, C Zhu, N Fang, Y Shao, T Zhao, J Yu, J Zhu, L Xu, S van Nocker, F Ma, Q Guan. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. New Phytologist, 2018, 218(1): 201–218
https://doi.org/10.1111/nph.14952 pmid: 29266327
37 H Thordal-Christensen, Z G Zhang, Y D Wei, D B Collinge. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant Journal, 1997, 11(6): 1187–1194
https://doi.org/10.1046/j.1365-313X.1997.11061187.x
38 S Wang, D Liang, C Li, Y Hao, F Ma, H Shu. Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiology and Biochemistry, 2012, 51: 81–89
https://doi.org/10.1016/j.plaphy.2011.10.014 pmid: 22153243
39 Y Xie, C Bao, P Chen, F Cao, X Liu, D Geng, Z Li, X Li, N Hou, F Zhi, C Niu, S Zhou, X Zhan, F Ma, Q Guan. Abscisic acid homeostasis is mediated by feedback regulation of MdMYB88 and MdMYB124. Journal of Experimental Botany, 2021, 72(2): 592–607
https://doi.org/10.1093/jxb/eraa449 pmid: 32995885
40 Y Sakuma, K Maruyama, Y Osakabe, F Qin, M Seki, K Shinozaki, K Yamaguchi-Shinozaki. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5): 1292–1309
https://doi.org/10.1105/tpc.105.035881 pmid: 16617101
41 J G Dubouzet, Y Sakuma, Y Ito, M Kasuga, E G Dubouzet, S Miura, M Seki, K Shinozaki, K Yamaguchi-Shinozaki. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal, 2003, 33(4): 751–763
https://doi.org/10.1046/j.1365-313X.2003.01661.x pmid: 12609047
42 A Chini, J J Grant, M Seki, K Shinozaki, G J Loake. Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant Journal, 2004, 38(5): 810–822
https://doi.org/10.1111/j.1365-313X.2004.02086.x pmid: 15144382
43 X Li, X Wang, Y Yang, R Li, Q He, X Fang, D T Luu, C Maurel, J Lin. Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell, 2011, 23(10): 3780–3797
https://doi.org/10.1105/tpc.111.091454 pmid: 22010034
44 W Li, X Cui, Z Meng, X Huang, Q Xie, H Wu, H Jin, D Zhang, W Liang. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiology, 2012, 158(3): 1279–1292
https://doi.org/10.1104/pp.111.188789 pmid: 22247272
45 W Li, T Wang, Y Zhang, Y Li. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. Journal of Experimental Botany, 2017, 68(16): 4727–4729
pmid: 27864541
46 K Xia, R Wang, X Ou, Z Fang, C Tian, J Duan, Y Wang, M Zhang. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One, 2012, 7(1): e30039
https://doi.org/10.1371/journal.pone.0030039 pmid: 22253868
47 C Ma, S Burd, A Lers. miR408 is involved in abiotic stress responses in Arabidopsis. Plant Journal, 2015, 84(1): 169–187
https://doi.org/10.1111/tpj.12999 pmid: 26312768
48 R C Augustine, R D Vierstra. SUMOylation: re-wiring the plant nucleus during stress and development. Current Opinion in Plant Biology, 2018, 15(Part A): 143–154
https://doi.org/10.7554/eLife.46993 pmid: 30912743
49 A K Srivastava, C Zhang, G Yates, M Bailey, A Brown, A Sadanandom. SUMO is a critical regulator of salt stress responses in rice. Plant Physiology, 2016, 170(4): 2378–2391
https://doi.org/10.1104/pp.15.01530 pmid: 26869703
50 M J Miller, G A Barrett-Wilt, Z Hua, R D Vierstra. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16512–16517
https://doi.org/10.1073/pnas.1004181107 pmid: 20813957
51 D Tempé, M Piechaczyk, G Bossis. SUMO under stress. Biochemical Society Transactions, 2008, 36(Pt 5): 874–878
https://doi.org/10.1042/BST0360874 pmid: 18793154
52 S Zhang, Y Qi, M Liu, C Yang. SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsisthaliana. Journal of Integrative Plant Biology, 2013, 55(1): 83–95
https://doi.org/10.1111/jipb.12024 pmid: 23231763
53 R F Zhang, L J Zhou, Y Y Li, C X You, G L Sha, Y J Hao. Apple SUMO E3 ligase MdSIZ1 is involved in the response to phosphate deficiency. Journal of Plant Physiology, 2019, 232: 216–225
https://doi.org/10.1016/j.jplph.2018.11.012 pmid: 30537609
54 L J Zhou, Y Y Li, R F Zhang, C L Zhang, X B Xie, C Zhao, Y J Hao. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple. Plant, Cell & Environment, 2017, 40(10): 2068–2080
https://doi.org/10.1111/pce.12978 pmid: 28440563
55 K Miura, N Renhu, T Suzaki. The PHD finger of Arabidopsis SIZ1 recognizes trimethylated histone H3K4 mediating SIZ1 function and abiotic stress response. Communications Biology, 2020, 3(1): 23
https://doi.org/10.1038/s42003-019-0746-2 pmid: 31925312
56 L H Yin, Y J Zou, M J Li, X W Ke, C Y Li, D Liang, F W Ma. Resistance of Malus plants to diplocarpon mali infection is associated with the antioxidant system and defense signaling pathways. Physiological and Molecular Plant Pathology, 2013, 84: 146–152
https://doi.org/10.1016/j.pmpp.2013.10.001
57 Q L Dong, D D Liu, X H An, D G Hu, Y X Yao, Y J Hao. MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. Journal of Plant Physiology, 2011, 168(17): 2124–2133
https://doi.org/10.1016/j.jplph.2011.07.001 pmid: 21840622
58 S Zhou, M Li, Q Guan, F Liu, S Zhang, W Chen, L Yin, Y Qin, F Ma. Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in Malus. Plant Science, 2015, 236: 44–60
https://doi.org/10.1016/j.plantsci.2015.03.017 pmid: 26025520
59 Y Kasukabe, L He, K Nada, S Misawa, I Ihara, S Tachibana. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant & Cell Physiology, 2004, 45(6): 712–722
https://doi.org/10.1093/pcp/pch083 pmid: 15215506
60 D S Kim, J B Kim, E J Goh, W J Kim, S H Kim, Y W Seo, C S Jang, S Y Kang. Antioxidant response of Arabidopsis plants to gamma irradiation: genome-wide expression profiling of the ROS scavenging and signal transduction pathways. Journal of Plant Physiology, 2011, 168(16): 1960–1971
https://doi.org/10.1016/j.jplph.2011.05.008 pmid: 21665324
61 M Rahikainen, J Pascual, S Alegre, G Durian, S Kangasjärvi. PP2A Phosphatase as a regulator of ROS signaling in Plants. Antioxidants, 2016, 5(1): 8
https://doi.org/10.3390/antiox5010008 pmid: 26950157
62 Q Liu, M Kasuga, Y Sakuma, H Abe, S Miura, K Yamaguchi-Shinozaki, K Shinozaki. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10(8): 1391–1406
https://doi.org/10.1105/tpc.10.8.1391 pmid: 9707537
63 N Brugière, W Zhang, Q Xu, E J Scolaro, C Lu, R Y Kahsay, R Kise, L Trecker, R W Williams, S Hakimi, X Niu, R Lafitte, J E Habben. Overexpression of RING domain E3 ligase ZmXerico1 confers drought tolerance through regulation of ABA homeostasis. Plant Physiology, 2017, 175(3): 1350–1369
https://doi.org/10.1104/pp.17.01072 pmid: 28899960
64 S P Grigg, C Canales, A Hay, M Tsiantis. SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature, 2005, 437(7061): 1022–1026
https://doi.org/10.1038/nature04052 pmid: 16222298
[1] Jianping AN, Xiaofei WANG, Chunxiang YOU, Yujin HAO. THE ANTHOCYANIN BIOSYNTHETIC REGULATOR MDMYB1 POSITIVELY REGULATES ASCORBIC ACID BIOSYNTHESIS IN APPLE[J]. Front. Agr. Sci. Eng. , 2021, 8(2): 231-235.
[2] Shen LIU, Shengzhe SHANG, Xuezhen YANG, Huihua ZHANG, Dan LU, Ning LI. Construction of a universal recombinant expression vector that regulates the expression of human lysozyme in milk[J]. Front. Agr. Sci. Eng. , 2018, 5(3): 382-389.
[3] Hongyuan ZHAO, Shanshan ZHANG, Feibing WANG, Ning ZHAO, Shaozhen HE, Qingchang LIU, Hong ZHAI. Comparative transcriptome analysis of purple-fleshed sweet potato provides insights into the molecular mechanism of anthocyanin biosynthesis[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 214-225.
[4] Shaoqing DU, Ling TONG, Shaozhong KANG, Fusheng LI, Taisheng DU, Sien LI, Risheng DING. Alternate partial root-zone irrigation with high irrigation frequency improves root growth and reduces unproductive water loss by apple trees in arid north-west China[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 188-196.
[5] Yulin LI,Deping HAN,Junying LI,Dawn KOLTES,Xuemei DENG. A microarray study of altered gene expression during melanoblasts migration in normal pigmented White Leghorn and hyperpigmented mutant Silky Fowl[J]. Front. Agr. Sci. Eng. , 2014, 1(4): 299-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed