| 
					
						|  |  
    					|  |  
    					| NEW INSIGHTS INTO THE PHYLOGENY AND SPECIATION OF KUMQUAT (FORTUNELLA SPP.) BASED ON CHLOROPLAST SNP, NUCLEAR SSR AND WHOLE-GENOME SEQUENCING |  
						| Chenqiao ZHU1, Peng CHEN1, Junli YE1, Hang LI1,2, Yue HUANG1, Xiaoming YANG1, Chuanwu CHEN1,3, Chenglei ZHANG1, Yuantao XU1, Xiaoli WANG1,4, Xiang YAN4, Guangzhou DENG3, Xiaolin JIANG1, Nan WANG1, Hongxing WANG1, Quan SUN1, Yun LIU1, Di FENG1, Min YU1, Xietian SONG1, Zongzhou XIE1, Yunliu ZENG1, Lijun CHAI1, Qiang XU1, Chongling DENG3, Yunjiang CHENG1, Xiuxin DENG1(  ) |  
						| 1. Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China 2. Fruit Industry Technology Guidance Stand of Ganzhou, Ganzhou 341000, China
 3. Guangxi Academy of Specialty Crops/Guangxi Citrus Breeding and Cultivation Research Center of Engineering Technology, Guilin 541004, China
 4. Ganzhou Citrus Research Institute, Ganzhou 341000, China
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract     ●  Fortunella genus consists of two populations: cultivated kumquat and wild Hong Kong kumquat. ● Artificial selection might involve in the origin of cultivated  Fortunella species. ● A hypothesis for the differentiation and speciation of  Fortunella species is proposed. Kumquat (Fortunella spp.) is a fruit and ornamental crop worldwide due to the palatable taste and high ornamental value of its fruit. Although Fortunella is classified into the economically important true citrus fruit tree group together with Citrus and Poncirus, few studies have been focused on its evolutionary scenario. In this study, analysis of five chloroplast loci and 47 nuclear microsatellites (nSSR) loci from 38 kumquat and 10 citrus accessions revealed the independent phylogeny of Fortunella among citrus taxa, and that Fortunella mainly comprises two populations: CUL, cultivated Fortunella spp. (F. margarita, F. crassifolia and F. japonica); and HK, wild Hong Kong kumquat (Fortunella hindsii). Genomic analysis based on whole-genome SNPs indicated that the allele frequency of both pupations deviated from the neutral selection model, suggesting directional selection was a force driving their evolutions. CUL exhibited lower genomic diversity and higher linkage strength than HK, suggesting artificial selection involved in its origin. A high level of genetic differentiation (Fst = 0.364) was detected and obviously asynchronous demographic changes were observed between CUL and HK. Based on these results, a new hypothesis for the speciation of Fortunella is proposed. |  
															| Keywords 
																																																				Citrus  
																		  																																				Fortunella  
																		  																																				kumquat  
																		  																																				phylogenetics |  
															| Corresponding Author(s):
																Xiuxin DENG |  
															| Just Accepted Date: 18 March 2022  
																																														Online First Date: 11 April 2022   
																																														Issue Date: 07 November 2022 |  |  
								            
								                
																																												
															| 1 | C Huang. Flora of China. Beijing: Science Press, 1997 (in Chinese) |  
															| 2 | W T Swingle, P C Reece. The botany of Citrus and its wild relatives. In: Reuther W, Webber H J, Batchelor L D, eds. The Citrus Industry. Berkeley: University of California, 1967, 190–430 |  
															| 3 | K Zhou, M Ye. Fruit Trees in China. Citrus Volume. Beijing: China Forestry Publishing House, 2009 (in Chinese) |  
															| 4 | D Barreca, E Bellocco, G Laganà, G Ginestra, C Bisignano. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chemistry, 2014, 160 : 292–297 https://doi.org/10.1016/j.foodchem.2014.03.118
 |  
															| 5 | E S Sadek, D P Makris, P Kefalas. Polyphenolic composition and antioxidant characteristics of kumquat (Fortunella margarita) peel fractions. Plant Foods for Human Nutrition, 2009, 64( 4): 297–302 https://doi.org/10.1007/s11130-009-0140-1
 |  
															| 6 | Y W Wang, W C Zeng, P Y Xu, Y J Lan, R X Zhu, K Zhong, Y N Huang, H Gao. Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel. International Journal of Molecular Sciences, 2012, 13( 3): 3382–3393 https://doi.org/10.3390/ijms13033382
 |  
															| 7 | K Nagahama, N Eto, T Shimojo, T Kondoh, K Nakahara, Y Sakakibara, K Fukui, M Suiko. Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo. Bioscience, Biotechnology, and Biochemistry, 2015, 79( 8): 1327–1336 https://doi.org/10.1080/09168451.2015.1025033
 |  
															| 8 | S N Lou, C T Ho. Phenolic compounds and biological activities of small-size citrus: kumquat and calamondin. Journal of Food and Drug Analysis, 2017, 25( 1): 162–175 https://doi.org/10.1016/j.jfda.2016.10.024
 |  
															| 9 | X Deng, S Peng. Citrus Science. Beijing: China Agriculture Press, 2013 (in Chinese) |  
															| 10 | X Z Fu, X Q Gong, Y X Zhang, Y Wang, J H Liu. Different transcriptional response to Xanthomonas citri subsp. citri between kumquat and sweet orange with contrasting canker tolerance. PLoS One, 2012, 7( 7): e41790 https://doi.org/10.1371/journal.pone.0041790
 |  
															| 11 | Y M Ye. Kumquat germplasms in China. China Seed Industry, 1983, 4: 2−5 (in Chinese) |  
															| 12 | C Zhu, X Zheng, Y Huang, J Ye, P Chen, C Zhang, F Zhao, Z Xie, S Zhang, N Wang, H Li, L Wang, X Tang, L Chai, Q Xu, X Deng. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering mini-citrus (Fortunella hindsii). Plant Biotechnology Journal, 2019, 17( 11): 2199–2210 https://doi.org/10.1111/pbi.13132
 |  
															| 13 | T Tanaka. Species problem in Citrus: a critical study of wild and cultivated unites of citrus, based upon field studies in their native homes (Revisio Aurantiacearum IX). Japanese Society for the Promotion of Science, 1954, 1–141 |  
															| 14 | X Deng, C Peng, Z Chen, Z Deng, J Xu, J Li, Y Liu, X Tang, G Zhong. Citrus Varieties in China. Beijing: China Agriculture Press, 2008 (in Chinese) |  
															| 15 | N A Barkley, M L Roose, R R Krueger, C T Federici. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretische und Angewandte Genetik, 2006, 112( 8): 1519–1531 |  
															| 16 | Y Cheng, M C de Vicente, H Meng, W Guo, N Tao, X Deng. A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiology, 2005, 25( 6): 661–672 https://doi.org/10.1093/treephys/25.6.661
 |  
															| 17 | X M Pang, C G Hu, X X Deng. Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genetic Resources and Crop Evolution, 2007, 54( 2): 429–436 https://doi.org/10.1007/s10722-006-0005-5
 |  
															| 18 | K Yasuda, M Yahata, H Komatsu, H Kunitake. Phylogeny and classification of Fortunella (Aurantioideae) inferred from DNA polymorphisms. Bulletin of the Faculty of Agriculture Miyazaki University, 2010, 56 : 103–110 |  
															| 19 | A Garcia-Lor, F Curk, H Snoussi-Trifa, R Morillon, G Ancillo, F Luro, L Navarro, P Ollitrault. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Annals of Botany, 2013, 111( 1): 1–19 https://doi.org/10.1093/aob/mcs227
 |  
															| 20 | J Carbonell-Caballero, R Alonso, V Ibañez, J Terol, M Talon, J Dopazo. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Molecular Biology and Evolution, 2015, 32( 8): 2015–2035 https://doi.org/10.1093/molbev/msv082
 |  
															| 21 | F Curk, F Ollitrault, A Garcia-Lor, F Luro, L Navarro, P Ollitrault. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Annals of Botany, 2016, 117( 4): 565–583 https://doi.org/10.1093/aob/mcw005
 |  
															| 22 | Q Xu, L L Chen, X Ruan, D Chen, A Zhu, C Chen, D Bertrand, W B Jiao, B H Hao, M P Lyon, J Chen, S Gao, F Xing, H Lan, J W Chang, X Ge, Y Lei, Q Hu, Y Miao, L Wang, S Xiao, M K Biswas, W Zeng, F Guo, H Cao, X Yang, X W Xu, Y J Cheng, J Xu, J H Liu, O J Luo, Z Tang, W W Guo, H Kuang, H Y Zhang, M L Roose, N Nagarajan, X X Deng, Y Ruan. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45( 1): 59–66 https://doi.org/10.1038/ng.2472
 |  
															| 23 | G A Wu, S Prochnik, J Jenkins, J Salse, U Hellsten, F Murat, X Perrier, M Ruiz, S Scalabrin, J Terol, M A Takita, K Labadie, J Poulain, A Couloux, K Jabbari, F Cattonaro, Fabbro C Del, S Pinosio, A Zuccolo, J Chapman, J Grimwood, F R Tadeo, L H Estornell, J V Muñoz-Sanz, V Ibanez, A Herrero-Ortega, P Aleza, J Pérez-Pérez, D Ramón, D Brunel, F Luro, C Chen, W G Farmerie, B Desany, C Kodira, M Mohiuddin, T Harkins, K Fredrikson, P Burns, A Lomsadze, M Borodovsky, G Reforgiato, J Freitas-Astúa, F Quetier, L Navarro, M Roose, P Wincker, J Schmutz, M Morgante, M A Machado, M Talon, O Jaillon, P Ollitrault, F Gmitter, D Rokhsar. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014, 32( 7): 656–662 https://doi.org/10.1038/nbt.2906
 |  
															| 24 | L Wang, F He, Y Huang, J He, S Yang, J Zeng, C Deng, X Jiang, Y Fang, S Wen, R Xu, H Yu, X Yang, G Zhong, C Chen, X Yan, C Zhou, H Zhang, Z Xie, R M Larkin, X Deng, Q Xu. Genome of wild mandarin and domestication history of mandarin. Molecular Plant, 2018, 11( 8): 1024–1037 https://doi.org/10.1016/j.molp.2018.06.001
 |  
															| 25 | X M Yang, H Li, H W Yu, L J Chai, Q Xu, X X Deng. Molecular phylogeography and population evolution analysis of Citrus ichangensis (Rutaceae). Tree Genetics & Genomes, 2017, 13( 1): 29 https://doi.org/10.1007/s11295-017-1113-4
 |  
															| 26 | X Yang, T Zhou, X Su, G Wang, X Zhang, Q Guo, F Cao. Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. Journal of Forestry Research, 2020, 32( 2): 765–778 https://doi.org/10.1007/s11676-019-01088-4
 |  
															| 27 | Y Wang, T Zhou, D Li, X Zhang, W Yu, J Cai, G Wang, Q Guo, X Yang, F Cao. The genetic diversity and population structure of Sophora alopecuroides (Faboideae) as determined by microsatellite markers developed from transcriptome. PLoS One, 2019, 14( 12): e0226100 https://doi.org/10.1371/journal.pone.0226100
 |  
															| 28 | Y J Cheng, W W Guo, X X Deng. Molecular characterization of cytoplasmic and nuclear genomes in phenotypically abnormal Valencia orange (Citrus sinensis) + Meiwa kumquat (Fortunella crassifolia) intergeneric somatic hybrids. Plant Cell Reports, 2003, 21( 5): 445–451 https://doi.org/10.1007/s00299-002-0532-2
 |  
															| 29 | M G Bausher, N D Singh, S B Lee, R K Jansen, H Daniell. The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biology, 2006, 6( 1): 21 https://doi.org/10.1186/1471-2229-6-21
 |  
															| 30 | X Yang, H Li, M Liang, Q Xu, L Chai, X Deng. Genetic diversity and phylogenetic relationships of citron (Citrus medica L.) and its relatives in southwest China. Tree Genetics & Genomes, 2015, 11( 6): 129 https://doi.org/10.1007/s11295-015-0955-x
 |  
															| 31 | S Kumar, G Stecher, K Tamura. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33( 7): 1870–1874 https://doi.org/10.1093/molbev/msw054
 |  
															| 32 | I Letunic, P Bork. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 2016, 44( W1): W242–W245 https://doi.org/10.1093/nar/gkw290
 |  
															| 33 | J Rozas, A Ferrer-Mata, J C Sánchez-DelBarrio, S Guirao-Rico, P Librado, S E Ramos-Onsins, A Sánchez-Gracia. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution, 2017, 34( 12): 3299–3302 https://doi.org/10.1093/molbev/msx248
 |  
															| 34 | T Polzin, S V Daneshmand. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 2003, 31( 1): 12–20 https://doi.org/10.1016/S0167-6377(02)00185-2
 |  
															| 35 | C Ruiz, Breto M Paz, M J Asíns. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica, 2000, 112( 1): 89–94 https://doi.org/10.1023/A:1003992719598
 |  
															| 36 | R Peakall, P E Smouse. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research —an update. Bioinformatics, 2012, 28( 19): 2537–2539 https://doi.org/10.1093/bioinformatics/bts460
 |  
															| 37 | G Evanno, S Regnaut, J Goudet. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 2005, 14( 8): 2611–2620 https://doi.org/10.1111/j.1365-294X.2005.02553.x
 |  
															| 38 | D A Earl, B M Vonholdt. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 2012, 4( 2): 359–361 https://doi.org/10.1007/s12686-011-9548-7
 |  
															| 39 | A M Bolger, M Lohse, B Usadel. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30( 15): 2114–2120 https://doi.org/10.1093/bioinformatics/btu170
 |  
															| 40 | H Li, R Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25( 14): 1754–1760 https://doi.org/10.1093/bioinformatics/btp324
 |  
															| 41 | H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, R Durbin, Genome Project Data Processing Subgroup 1000. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25( 16): 2078–2079 https://doi.org/10.1093/bioinformatics/btp352
 |  
															| 42 | P Cingolani, A Platts, L Wang, M Coon, T Nguyen, L Wang, S J Land, X Lu, D M Ruden. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012, 6( 2): 80–92 https://doi.org/10.4161/fly.19695
 |  
															| 43 | J Yang, S H Lee, M E Goddard, P M Visscher. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88( 1): 76–82 https://doi.org/10.1016/j.ajhg.2010.11.011
 |  
															| 44 | D H Alexander, K Lange. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 2011, 12( 1): 246 https://doi.org/10.1186/1471-2105-12-246
 |  
															| 45 | P Danecek, A Auton, G Abecasis, C A Albers, E Banks, M A DePristo, R E Handsaker, G Lunter, G T Marth, S T Sherry, G McVean, R Durbin. The variant call format and VCFtools. Bioinformatics, 2011, 27( 15): 2156–2158 https://doi.org/10.1093/bioinformatics/btr330
 |  
															| 46 | S Purcell, B Neale, K Todd-Brown, L Thomas, M A R Ferreira, D Bender, J Maller, P Sklar, P I W de Bakker, M J Daly, P C Sham. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81( 3): 559–575 https://doi.org/10.1086/519795
 |  
															| 47 | A J Vilella, A Blanco-Garcia, S Hutter, J Rozas. VariScan: analysis of evolutionary patterns from large-scale DNA sequence polymorphism data. Bioinformatics, 2005, 21( 11): 2791–2793 https://doi.org/10.1093/bioinformatics/bti403
 |  
															| 48 | H Li, R Durbin. Inference of human population history from individual whole-genome sequences. Nature, 2011, 475( 7357): 493–496 https://doi.org/10.1038/nature10231
 |  
															| 49 | P G Meirmans, P W Hedrick. Assessing population structure: F(ST) and related measures. Molecular Ecology Resources, 2011, 11( 1): 5–18 https://doi.org/10.1111/j.1755-0998.2010.02927.x
 |  
															| 50 | B S Weir, C C Cockerham. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38( 6): 1358–1370 |  
															| 51 | X Wang, Y Xu, S Zhang, L Cao, Y Huang, J Cheng, G Wu, S Tian, C Chen, Y Liu, H Yu, X Yang, H Lan, N Wang, L Wang, J Xu, X Jiang, Z Xie, M Tan, R M Larkin, L L Chen, B G Ma, Y Ruan, X Deng, Q Xu. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics, 2017, 49( 5): 765–772 https://doi.org/10.1038/ng.3839
 |  
															| 52 | D Lin, F Wu. Distribution and variety of kumquat in China. South China Fruits, 1987, 1(1): 3−5 (in Chinese) |  
															| 53 | A Garcia-Lor, F Luro, P Ollitrault, L Navarro. Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genetics & Genomes, 2015, 11( 6): 123 https://doi.org/10.1007/s11295-015-0951-1
 |  
															| 54 | P Chen. The investigation and genetic diversity evaluation of wild Hong Kong kumquat (Fotunella hindsii swingle) in China. Dissertation for the Master’s Degree. Wuhan: Huazhong Agricultural University, 2011 (in Chinese) |  
															| 55 | G A Wu, J Terol, V Ibanez, A López-García, E Pérez-Román, C Borredá, C Domingo, F R Tadeo, J Carbonell-Caballero, R Alonso, F Curk, D Du, P Ollitrault, M L Roose, J Dopazo, F G Gmitter, D S Rokhsar, M Talon. Genomics of the origin and evolution of Citrus. Genomics of the origin and evolution of Citrus, 2018, 554( 7692): 311–316 https://doi.org/10.1038/nature25447
 |  
															| 56 | P Atahan, F Itzstein-Davey, D Taylor, J Dodson, J Qin, H Zheng, A Brooks. Holocene-aged sedimentary records of environmental changes and early agriculture in the lower Yangtze, China. Quaternary Science Reviews, 2008, 27( 5−6): 556–570 https://doi.org/10.1016/j.quascirev.2007.11.003
 |  
															| 57 | J Z Zhang, C F Chen, Y Z Yang. Origins and early development of agriculture in China. Journal of National Museum of China, 2014, 1: 6−16 (in Chinese) |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |