Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (4) : 627-641    https://doi.org/10.15302/J-FASE-2021436
RESEARCH ARTICLE
NEW INSIGHTS INTO THE PHYLOGENY AND SPECIATION OF KUMQUAT (FORTUNELLA SPP.) BASED ON CHLOROPLAST SNP, NUCLEAR SSR AND WHOLE-GENOME SEQUENCING
Chenqiao ZHU1, Peng CHEN1, Junli YE1, Hang LI1,2, Yue HUANG1, Xiaoming YANG1, Chuanwu CHEN1,3, Chenglei ZHANG1, Yuantao XU1, Xiaoli WANG1,4, Xiang YAN4, Guangzhou DENG3, Xiaolin JIANG1, Nan WANG1, Hongxing WANG1, Quan SUN1, Yun LIU1, Di FENG1, Min YU1, Xietian SONG1, Zongzhou XIE1, Yunliu ZENG1, Lijun CHAI1, Qiang XU1, Chongling DENG3, Yunjiang CHENG1, Xiuxin DENG1()
1. Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
2. Fruit Industry Technology Guidance Stand of Ganzhou, Ganzhou 341000, China
3. Guangxi Academy of Specialty Crops/Guangxi Citrus Breeding and Cultivation Research Center of Engineering Technology, Guilin 541004, China
4. Ganzhou Citrus Research Institute, Ganzhou 341000, China
 Download: PDF(4357 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fortunella genus consists of two populations: cultivated kumquat and wild Hong Kong kumquat.

● Artificial selection might involve in the origin of cultivated Fortunella species.

● A hypothesis for the differentiation and speciation of Fortunella species is proposed.

Kumquat (Fortunella spp.) is a fruit and ornamental crop worldwide due to the palatable taste and high ornamental value of its fruit. Although Fortunella is classified into the economically important true citrus fruit tree group together with Citrus and Poncirus, few studies have been focused on its evolutionary scenario. In this study, analysis of five chloroplast loci and 47 nuclear microsatellites (nSSR) loci from 38 kumquat and 10 citrus accessions revealed the independent phylogeny of Fortunella among citrus taxa, and that Fortunella mainly comprises two populations: CUL, cultivated Fortunella spp. (F. margarita, F. crassifolia and F. japonica); and HK, wild Hong Kong kumquat (Fortunella hindsii). Genomic analysis based on whole-genome SNPs indicated that the allele frequency of both pupations deviated from the neutral selection model, suggesting directional selection was a force driving their evolutions. CUL exhibited lower genomic diversity and higher linkage strength than HK, suggesting artificial selection involved in its origin. A high level of genetic differentiation (Fst = 0.364) was detected and obviously asynchronous demographic changes were observed between CUL and HK. Based on these results, a new hypothesis for the speciation of Fortunella is proposed.

Keywords Citrus      Fortunella      kumquat      phylogenetics     
Corresponding Author(s): Xiuxin DENG   
Just Accepted Date: 18 March 2022   Online First Date: 11 April 2022    Issue Date: 07 November 2022
 Cite this article:   
Chenqiao ZHU,Peng CHEN,Junli YE, et al. NEW INSIGHTS INTO THE PHYLOGENY AND SPECIATION OF KUMQUAT (FORTUNELLA SPP.) BASED ON CHLOROPLAST SNP, NUCLEAR SSR AND WHOLE-GENOME SEQUENCING[J]. Front. Agr. Sci. Eng. , 2022, 9(4): 627-641.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021436
https://academic.hep.com.cn/fase/EN/Y2022/V9/I4/627
Accession code Common name Species Location Description Utilization
LF Nagami Fortunella margarita Taizhou, Zhejiang Germplasm 1, 2, 3
QZLF Nagami F. margarita Quzhou, Zhejiang Germplasm 1, 2
DGLF Nagami F. margarita Zhejiang Landrace 1, 2, 3
JZLF Nagami F. margarita Zhejiang Landrace 1, 2
WZLF Nagami F. margarita Wenzhou, Zhejiang Landrace 1, 2
LFHY Nagami F. margarita Taizhou, Zhejiang Landrace 1, 2
LW Narumi F. japonica Ningbo, Zhejiang Germplasm 1, 2, 3
GXCP Narumi F. japonica Liuzhou, Guangxi Landrace 1, 2, 3
LCHP Meiwa F. crassifolia Guilin, Guangxi Cultivar 1, 2
HPJG Meiwa F. crassifolia Guilin, Guangxi Landrace 1, 2, 3
LSHY Meiwa F. crassifolia Yongzhou, Hunan Germplasm 1, 2
YXBZQ Meiwa F. crassifolia Sanming, Fujian Landrace 1, 2, 3
JX4 Meiwa F. crassifolia Ji’an, Jiangxi Cultivar 1, 2, 3
LYJD Meiwa F. crassifolia Changsha, Hunan Germplasm 1, 2, 3
WZJD Meiwa F. crassifolia Wenzhou, Zhejiang Germplasm 1, 2, 3
LSJG Meiwa F. crassifolia Yongzhou, Hunan Landrace 1, 2, 3
LYJG Meiwa F. crassifolia Changsha, Hunan Cultivar 1, 2
NBJD Meiwa F. crassifolia Ningbo, Zhejiang Cultivar 1, 2
RAJG Meiwa F. japonica Liuzhou, Guangxi Landrace 1, 2, 3
YSJG Meiwa F. crassifolia Guilin, Guangxi Cultivar 1, 2, 3
G1 Meiwa F. crassifolia Guilin, Guangxi Landrace 1, 2
G2 Meiwa F. crassifolia Guilin, Guangxi Landrace 1, 2, 3
DJD Hong Kong F. hindsii Fujian Ornamental 1, 2
XJD Hong Kong F. hindsii Fujian Ornamental 1, 2
WTD Hong Kong F. hindsii Jieyang, Guangdong Wild 1, 2, 3
JD Hong Kong F. hindsii Fujian Ornamental 1, 2
DR01 Hong Kong F. hindsii Longyan, Fujian Wild 1, 2, 3
DB02 Hong Kong F. hindsii Ganzhou, Jiangxi Wild 1, 2, 3
CZ Hong Kong F. hindsii Chenzhou, Hunan Wild 1, 2, 3
MJS Hong Kong F. hindsii Ningbo, Zhejiang Wild 1, 2, 3
WGJ Wenguangju Hybrid / Ornamental 1, 2
JGZ / Hybrid / Rootstock 1, 2
SJJ Calamondin Citrus madurensis Fujian Cultivar 1, 2
CS Changshou F. obovata Fujian Ornamental 1, 2
HCYJG Meiwa F. crassifolia Ganzhou, Jiangxi Germplasm 1, 2, 3
XLF Nagami F. margarita Ningbo, Zhejiang Landrace 1, 2, 3
YXJG Meiwa F. crassifolia Sanming, Fujian Cultivar 1, 2
YCJD Meiwa F. crassifolia Quanzhou, Fujian Germplasm 1, 2
ML Lime C. aurantifolia / Cultivar 1, 2
XC Sweet orange C. sinensis / Cultivar 1, 2
ZHI Trifoliate orange Poncirus / Cultivar 1, 2
XY Foshou citron C. medica / Cultivar 1, 2
YCC Papeda C. ichangensis / Wild 1, 2
GXMY Pummelo C. maxima / Cultivar 1, 2
MSYJ Mandarin C. reticulata / Cultivar 1, 2
HKC Box orange Atalantia / Relatives 1, 2
NM Lemon C. limon / Cultivar 1, 2
SC Sour orange C. aurantium / Cultivar 1, 2
CFX Hong Kong F. hindsii Ganzhou, Jiangxi Wild 3
JIEX Hong Kong F. hindsii Jieyang, Guangdong Wild 3
DYS02 Hong Kong F. hindsii Sanming, Fujian Wild 3
LH08 Hong Kong F. hindsii Xiamen, Fujian Wild 3
DYT01 Hong Kong F. hindsii Longyan, Fujian Wild 3
ZX9 Hong Kong F. hindsii Wenzhou, Zhejiang Wild 3
LY43 Hong Kong F. hindsii Ningbo, Zhejiang Wild 3
HC27 Hong Kong F. hindsii Shaoguan, Guangdong Wild 3
XMS Hong Kong F. hindsii Guangzhou, Guangdong Wild 3
JLS Hong Kong F. hindsii Ganzhou, Jiangxi Wild 3
Tab.1  Details and utilization of the accession evaluated in this study
Fig.1  Phylogenetic tree and haplotype network of Fortunella based on five chloroplast loci. (a) Phylogenetic tree of 38 Fortunella and 10 citrus accessions. Clades of the tree are highlighted by different colors. Clade I, black, Chinese box orange (Atalantia buxifolia); Clade II, yellow, citron (Citrus medica); Clade III, light green, lime (C. aurantiifolia), papeda (C. ichangensis) and wild mandarin (C. reticulata); Clade IV, dark green, trifoliate orange (Poncirus trifoliata); Clade V, olive, sweet orange (C. sinensis), lemon (C. limon), pummelo (C. maxima) and sour orange (C. aurantium); and Clade VI, red, kumquat (Fortunella spp.). (b) Haplotype network of 38 Fortunella and 10 citrus accessions. Each dot on the network presents a type of haplotype. The genera are: blue, Poncirus; yellow, Citrus; black, Atalantia; and red, Fortunella. (c) Composition of the 11 Fortunella haplotypes. Species are highlighted as: purple, Hong Kong kumquat (F. hindsii); blue, Meiwa kumquat (F. crassifolia); salmon, Nagami kumquat (F. margarita); green, Marumi kumquat (F. japonica); and gray, hybrid kumquat.
Fig.2  Genetic structure of 38 kumquat and 10 citrus accessions based on 47 nSSR loci. (a)Principal component analysis of 38 kumquat and 10 citrus accessions. Accessions are presented by different colors (as in Fig. 1(a)). Clade I, black, Chinese box orange (Atalantia buxifolia); Clade II, yellow, citron (Citrus medica); Clade III, light green, lime (C. aurantiifolia), papeda (C. ichangensis) and wild mandarin (C. reticulata); Clade IV, dark green, trifoliate orange (Poncirus trifoliata); Clade V, olive, sweet orange (C. sinensis), lemon (C. limon), pummelo (C. maxima) and sour orange (C. aurantium); Clade VI, red, kumquat (Fortunella spp.). (b) Phylogenetic tree and population structure of 38 kumquat and 10 citrus accessions based on nSSR data. On the left side, phylogenetic tree was constructed using distance-based UPGMA method; clades of known kumquat hybrids (WGJ, CS, JGZ and Calamondin), cultivated Fortunella spp. (F. margarita, F. crassifolia and F. japonica) and Hong Kong kumquat (F. hindsii) accessions are shown in pink, orange and green, respectively. On the right side, each accession is represented by a horizontal stacked bar of genetic components with the proportion shown in color for K = 2 estimated by STRUCTURE.
Fig.3  Phenotype and population structure of cultivated Fortunella spp. (CUL) and wild Hong Kong kumquat (HK). (a) Fruit phenotypes of the four Fortunella spp. (b) Cross and longitudinal sections of CUL and HK; CUL has larger fruit organ with thickened and sweet albedo, whereas HK has smaller fruit with thin and acerb peel. (c) Population structure among 15 CUL and 15 HK accessions based on whole-genomic 5,104,141 SNPs. Each accession is represented by a vertical stacked column of genetic components with the proportion shown in color for K = 2, 3 and 4 estimated by ADMIXTURE.
Statistics CUL HK
Number of segregating sites 3,737,798 9,140,932
Total number of mutations 3,762,401 9,269,923
Number of singletons 706,304 3,862,794
Pi 0.12 0.23
Theta 0.10 0.26
Tajima_D 0.61 −0.46
FuLi_Dstar 0.75 −0.46
FuLi_Fstar 0.82 −0.53
Tab.2  Genomic diversity of cultivated Fortunella (CUL) and wild Hong Kong kumquat (HK) populations
Comparison set Fst
CUL vs HK 0.364
CUL vs HK (Jiulianshan) 0.361
CUL vs HK (Guangdong coast) 0.438
CUL vs HK (Fujian coast) 0.456
CUL vs HK (Zhejiang coast) 0.469
F. margarita vs F. japonica 0.338
F. margarita vs F. crassifolia 0.345
F. japonica vs F. crassifolia 0.327
Tab.3  Genomic divergence between cultivated Fortunella (CUL) and wild Hong Kong kumquat (HK) populations
Fig.4  Demographic history and speciation hypothesis of Fortunella. (a) Demographic history of cultivated Fortunella (CUL) and wild Hong Kong kumquat (HK) populations. Effective population size of the CUL (orange curve) and HK (green curve) were reconstructed by using the pairwise sequentially Markovian coalescent model. Quaternary glacial period is marked by blue background. Obvious population bottlenecks are marked by gray background. (b) Speciation hypothesis of Fortunella spp. Blue, orange and green dots represent the common ancestor of Fortunella, cultivated Fortunella spp. (F. margartita, F. crassifolia and F. japonica) and Hong Kong kumquat (F. hindsii) populations, respecitvely. The peaked line represents geographical barrier; straight arrow represents natural selection; dotted arrow indicates artificial selection. The northern population experienced earlier and severer climatic changes during Quaternary glacial period (QGP) compared to the southern population. During QGP, the northern and southern populations were gradually isolated from each other by geographical barrier (probably Nanling Mountains) and underwent adaptive evolution separately. With the southward migration of humans, modern cultivated Fortunella spp. were selected from the northern population.
1 C Huang. Flora of China. Beijing: Science Press, 1997 (in Chinese)
2 W T Swingle, P C Reece. The botany of Citrus and its wild relatives. In: Reuther W, Webber H J, Batchelor L D, eds. The Citrus Industry. Berkeley: University of California, 1967, 190–430
3 K Zhou, M Ye. Fruit Trees in China. Citrus Volume. Beijing: China Forestry Publishing House, 2009 (in Chinese)
4 D Barreca, E Bellocco, G Laganà, G Ginestra, C Bisignano. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chemistry, 2014, 160 : 292–297
https://doi.org/10.1016/j.foodchem.2014.03.118
5 E S Sadek, D P Makris, P Kefalas. Polyphenolic composition and antioxidant characteristics of kumquat (Fortunella margarita) peel fractions. Plant Foods for Human Nutrition, 2009, 64( 4): 297–302
https://doi.org/10.1007/s11130-009-0140-1
6 Y W Wang, W C Zeng, P Y Xu, Y J Lan, R X Zhu, K Zhong, Y N Huang, H Gao. Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel. International Journal of Molecular Sciences, 2012, 13( 3): 3382–3393
https://doi.org/10.3390/ijms13033382
7 K Nagahama, N Eto, T Shimojo, T Kondoh, K Nakahara, Y Sakakibara, K Fukui, M Suiko. Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo. Bioscience, Biotechnology, and Biochemistry, 2015, 79( 8): 1327–1336
https://doi.org/10.1080/09168451.2015.1025033
8 S N Lou, C T Ho. Phenolic compounds and biological activities of small-size citrus: kumquat and calamondin. Journal of Food and Drug Analysis, 2017, 25( 1): 162–175
https://doi.org/10.1016/j.jfda.2016.10.024
9 X Deng, S Peng. Citrus Science. Beijing: China Agriculture Press, 2013 (in Chinese)
10 X Z Fu, X Q Gong, Y X Zhang, Y Wang, J H Liu. Different transcriptional response to Xanthomonas citri subsp. citri between kumquat and sweet orange with contrasting canker tolerance. PLoS One, 2012, 7( 7): e41790
https://doi.org/10.1371/journal.pone.0041790
11 Y M Ye. Kumquat germplasms in China. China Seed Industry, 1983, 4: 2−5 (in Chinese)
12 C Zhu, X Zheng, Y Huang, J Ye, P Chen, C Zhang, F Zhao, Z Xie, S Zhang, N Wang, H Li, L Wang, X Tang, L Chai, Q Xu, X Deng. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering mini-citrus (Fortunella hindsii). Plant Biotechnology Journal, 2019, 17( 11): 2199–2210
https://doi.org/10.1111/pbi.13132
13 T Tanaka. Species problem in Citrus: a critical study of wild and cultivated unites of citrus, based upon field studies in their native homes (Revisio Aurantiacearum IX). Japanese Society for the Promotion of Science, 1954, 1–141
14 X Deng, C Peng, Z Chen, Z Deng, J Xu, J Li, Y Liu, X Tang, G Zhong. Citrus Varieties in China. Beijing: China Agriculture Press, 2008 (in Chinese)
15 N A Barkley, M L Roose, R R Krueger, C T Federici. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretische und Angewandte Genetik, 2006, 112( 8): 1519–1531
16 Y Cheng, M C de Vicente, H Meng, W Guo, N Tao, X Deng. A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiology, 2005, 25( 6): 661–672
https://doi.org/10.1093/treephys/25.6.661
17 X M Pang, C G Hu, X X Deng. Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genetic Resources and Crop Evolution, 2007, 54( 2): 429–436
https://doi.org/10.1007/s10722-006-0005-5
18 K Yasuda, M Yahata, H Komatsu, H Kunitake. Phylogeny and classification of Fortunella (Aurantioideae) inferred from DNA polymorphisms. Bulletin of the Faculty of Agriculture Miyazaki University, 2010, 56 : 103–110
19 A Garcia-Lor, F Curk, H Snoussi-Trifa, R Morillon, G Ancillo, F Luro, L Navarro, P Ollitrault. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Annals of Botany, 2013, 111( 1): 1–19
https://doi.org/10.1093/aob/mcs227
20 J Carbonell-Caballero, R Alonso, V Ibañez, J Terol, M Talon, J Dopazo. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Molecular Biology and Evolution, 2015, 32( 8): 2015–2035
https://doi.org/10.1093/molbev/msv082
21 F Curk, F Ollitrault, A Garcia-Lor, F Luro, L Navarro, P Ollitrault. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Annals of Botany, 2016, 117( 4): 565–583
https://doi.org/10.1093/aob/mcw005
22 Q Xu, L L Chen, X Ruan, D Chen, A Zhu, C Chen, D Bertrand, W B Jiao, B H Hao, M P Lyon, J Chen, S Gao, F Xing, H Lan, J W Chang, X Ge, Y Lei, Q Hu, Y Miao, L Wang, S Xiao, M K Biswas, W Zeng, F Guo, H Cao, X Yang, X W Xu, Y J Cheng, J Xu, J H Liu, O J Luo, Z Tang, W W Guo, H Kuang, H Y Zhang, M L Roose, N Nagarajan, X X Deng, Y Ruan. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45( 1): 59–66
https://doi.org/10.1038/ng.2472
23 G A Wu, S Prochnik, J Jenkins, J Salse, U Hellsten, F Murat, X Perrier, M Ruiz, S Scalabrin, J Terol, M A Takita, K Labadie, J Poulain, A Couloux, K Jabbari, F Cattonaro, Fabbro C Del, S Pinosio, A Zuccolo, J Chapman, J Grimwood, F R Tadeo, L H Estornell, J V Muñoz-Sanz, V Ibanez, A Herrero-Ortega, P Aleza, J Pérez-Pérez, D Ramón, D Brunel, F Luro, C Chen, W G Farmerie, B Desany, C Kodira, M Mohiuddin, T Harkins, K Fredrikson, P Burns, A Lomsadze, M Borodovsky, G Reforgiato, J Freitas-Astúa, F Quetier, L Navarro, M Roose, P Wincker, J Schmutz, M Morgante, M A Machado, M Talon, O Jaillon, P Ollitrault, F Gmitter, D Rokhsar. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014, 32( 7): 656–662
https://doi.org/10.1038/nbt.2906
24 L Wang, F He, Y Huang, J He, S Yang, J Zeng, C Deng, X Jiang, Y Fang, S Wen, R Xu, H Yu, X Yang, G Zhong, C Chen, X Yan, C Zhou, H Zhang, Z Xie, R M Larkin, X Deng, Q Xu. Genome of wild mandarin and domestication history of mandarin. Molecular Plant, 2018, 11( 8): 1024–1037
https://doi.org/10.1016/j.molp.2018.06.001
25 X M Yang, H Li, H W Yu, L J Chai, Q Xu, X X Deng. Molecular phylogeography and population evolution analysis of Citrus ichangensis (Rutaceae). Tree Genetics & Genomes, 2017, 13( 1): 29
https://doi.org/10.1007/s11295-017-1113-4
26 X Yang, T Zhou, X Su, G Wang, X Zhang, Q Guo, F Cao. Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. Journal of Forestry Research, 2020, 32( 2): 765–778
https://doi.org/10.1007/s11676-019-01088-4
27 Y Wang, T Zhou, D Li, X Zhang, W Yu, J Cai, G Wang, Q Guo, X Yang, F Cao. The genetic diversity and population structure of Sophora alopecuroides (Faboideae) as determined by microsatellite markers developed from transcriptome. PLoS One, 2019, 14( 12): e0226100
https://doi.org/10.1371/journal.pone.0226100
28 Y J Cheng, W W Guo, X X Deng. Molecular characterization of cytoplasmic and nuclear genomes in phenotypically abnormal Valencia orange (Citrus sinensis) + Meiwa kumquat (Fortunella crassifolia) intergeneric somatic hybrids. Plant Cell Reports, 2003, 21( 5): 445–451
https://doi.org/10.1007/s00299-002-0532-2
29 M G Bausher, N D Singh, S B Lee, R K Jansen, H Daniell. The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biology, 2006, 6( 1): 21
https://doi.org/10.1186/1471-2229-6-21
30 X Yang, H Li, M Liang, Q Xu, L Chai, X Deng. Genetic diversity and phylogenetic relationships of citron (Citrus medica L.) and its relatives in southwest China. Tree Genetics & Genomes, 2015, 11( 6): 129
https://doi.org/10.1007/s11295-015-0955-x
31 S Kumar, G Stecher, K Tamura. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33( 7): 1870–1874
https://doi.org/10.1093/molbev/msw054
32 I Letunic, P Bork. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 2016, 44( W1): W242–W245
https://doi.org/10.1093/nar/gkw290
33 J Rozas, A Ferrer-Mata, J C Sánchez-DelBarrio, S Guirao-Rico, P Librado, S E Ramos-Onsins, A Sánchez-Gracia. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution, 2017, 34( 12): 3299–3302
https://doi.org/10.1093/molbev/msx248
34 T Polzin, S V Daneshmand. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 2003, 31( 1): 12–20
https://doi.org/10.1016/S0167-6377(02)00185-2
35 C Ruiz, Breto M Paz, M J Asíns. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica, 2000, 112( 1): 89–94
https://doi.org/10.1023/A:1003992719598
36 R Peakall, P E Smouse. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research —an update. Bioinformatics, 2012, 28( 19): 2537–2539
https://doi.org/10.1093/bioinformatics/bts460
37 G Evanno, S Regnaut, J Goudet. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 2005, 14( 8): 2611–2620
https://doi.org/10.1111/j.1365-294X.2005.02553.x
38 D A Earl, B M Vonholdt. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 2012, 4( 2): 359–361
https://doi.org/10.1007/s12686-011-9548-7
39 A M Bolger, M Lohse, B Usadel. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30( 15): 2114–2120
https://doi.org/10.1093/bioinformatics/btu170
40 H Li, R Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25( 14): 1754–1760
https://doi.org/10.1093/bioinformatics/btp324
41 H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, R Durbin, Genome Project Data Processing Subgroup 1000. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25( 16): 2078–2079
https://doi.org/10.1093/bioinformatics/btp352
42 P Cingolani, A Platts, L Wang, M Coon, T Nguyen, L Wang, S J Land, X Lu, D M Ruden. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012, 6( 2): 80–92
https://doi.org/10.4161/fly.19695
43 J Yang, S H Lee, M E Goddard, P M Visscher. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88( 1): 76–82
https://doi.org/10.1016/j.ajhg.2010.11.011
44 D H Alexander, K Lange. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 2011, 12( 1): 246
https://doi.org/10.1186/1471-2105-12-246
45 P Danecek, A Auton, G Abecasis, C A Albers, E Banks, M A DePristo, R E Handsaker, G Lunter, G T Marth, S T Sherry, G McVean, R Durbin. The variant call format and VCFtools. Bioinformatics, 2011, 27( 15): 2156–2158
https://doi.org/10.1093/bioinformatics/btr330
46 S Purcell, B Neale, K Todd-Brown, L Thomas, M A R Ferreira, D Bender, J Maller, P Sklar, P I W de Bakker, M J Daly, P C Sham. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81( 3): 559–575
https://doi.org/10.1086/519795
47 A J Vilella, A Blanco-Garcia, S Hutter, J Rozas. VariScan: analysis of evolutionary patterns from large-scale DNA sequence polymorphism data. Bioinformatics, 2005, 21( 11): 2791–2793
https://doi.org/10.1093/bioinformatics/bti403
48 H Li, R Durbin. Inference of human population history from individual whole-genome sequences. Nature, 2011, 475( 7357): 493–496
https://doi.org/10.1038/nature10231
49 P G Meirmans, P W Hedrick. Assessing population structure: F(ST) and related measures. Molecular Ecology Resources, 2011, 11( 1): 5–18
https://doi.org/10.1111/j.1755-0998.2010.02927.x
50 B S Weir, C C Cockerham. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38( 6): 1358–1370
51 X Wang, Y Xu, S Zhang, L Cao, Y Huang, J Cheng, G Wu, S Tian, C Chen, Y Liu, H Yu, X Yang, H Lan, N Wang, L Wang, J Xu, X Jiang, Z Xie, M Tan, R M Larkin, L L Chen, B G Ma, Y Ruan, X Deng, Q Xu. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics, 2017, 49( 5): 765–772
https://doi.org/10.1038/ng.3839
52 D Lin, F Wu. Distribution and variety of kumquat in China. South China Fruits, 1987, 1(1): 3−5 (in Chinese)
53 A Garcia-Lor, F Luro, P Ollitrault, L Navarro. Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genetics & Genomes, 2015, 11( 6): 123
https://doi.org/10.1007/s11295-015-0951-1
54 P Chen. The investigation and genetic diversity evaluation of wild Hong Kong kumquat (Fotunella hindsii swingle) in China. Dissertation for the Master’s Degree. Wuhan: Huazhong Agricultural University, 2011 (in Chinese)
55 G A Wu, J Terol, V Ibanez, A López-García, E Pérez-Román, C Borredá, C Domingo, F R Tadeo, J Carbonell-Caballero, R Alonso, F Curk, D Du, P Ollitrault, M L Roose, J Dopazo, F G Gmitter, D S Rokhsar, M Talon. Genomics of the origin and evolution of Citrus. Genomics of the origin and evolution of Citrus, 2018, 554( 7692): 311–316
https://doi.org/10.1038/nature25447
56 P Atahan, F Itzstein-Davey, D Taylor, J Dodson, J Qin, H Zheng, A Brooks. Holocene-aged sedimentary records of environmental changes and early agriculture in the lower Yangtze, China. Quaternary Science Reviews, 2008, 27( 5−6): 556–570
https://doi.org/10.1016/j.quascirev.2007.11.003
57 J Z Zhang, C F Chen, Y Z Yang. Origins and early development of agriculture in China. Journal of National Museum of China, 2014, 1: 6−16 (in Chinese)
[1] FASE-21436-OF-ZCQ_suppl_1 Download
[1] Manosh Kumar BISWAS, Christoph MAYER, Xiuxin DENG. Repeats in the transcribed regions: comprehensive characterization and comparison of Citrus spp.[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 421-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed