|
|
|
HARNESSING ECOLOGICAL PRINCIPLES AND PHYSIOLOGIC MECHANISMS IN DIVERSIFYING AGRICULTURAL SYSTEMS FOR SUSTAINABILITY: EXPERIENCE FROM STUDIES DEPLOYING NATURE-BASED SOLUTIONS IN SCOTLAND |
Timothy S. GEORGE( ), Cathy HAWES, Tracy A. VALENTINE, Alison J. KARLEY, Pietro P. M. IANNETTA, Robin W. BROOKER |
| Ecological Sciences Department, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK |
|
|
|
|
Abstract ● Diversification enhances nature-based contributions to cropping system functions. ● Soil management to improve production and ecosystem function has variable outcomes. ● Management of the production-system to use legacy nutrients will reduce inputs. ● Intercrops, companion crops and cover crops improve ecological sustainability. ● Sustainable interventions within value chains are essential to future-proof agriculture. To achieve the triple challenge of food security, reversing biodiversity declines plus mitigating and adapting to climate change, there is a drive to embed ecological principles into agricultural, value-chain practices and decision-making. By diversifying cropping systems at several scales there is potential to decrease reliance on inputs, provide resilience to abiotic and biotic stress, enhance plant, microbe and animal biodiversity, and mitigate against climate change. In this review we highlight the research performed in Scotland over the past 5 years into the impact of the use of ecological principles in agriculture on sustainability, resilience and provision of ecosystem functions. We demonstrate that diversification of the system can enhance ecosystem functions. Soil and plant management interventions, including nature-based solutions, can also enhance soil quality and utilization of legacy nutrients. Additionally, this is facilitated by greater reliance on soil biological processes and trophic interactions. We highlight the example of intercropping with legumes to deliver sustainability through ecological principles and use legumes as an exemplar of the innovation. We conclude that there are many effective interventions that can be made to deliver resilient, sustainable, and diverse agroecosystems for crop and food production, and these may be applicable in any agroecosystem.
|
| Keywords
diversification
ecological principles
legumes
plant management
soil management
soil ecosystem services
|
|
Corresponding Author(s):
Timothy S. GEORGE
|
|
Just Accepted Date: 23 March 2022
Online First Date: 26 April 2022
Issue Date: 25 May 2022
|
|
| 1 |
R W, Brooker T S, George Z, Homulle A J, Karley A C, Newton R J, Pakeman C Schöb . Facilitation and biodiversity– ecosystem function relationships in crop production systems and their role in sustainable farming. Journal of Ecology, 2021, 109( 5): 2054–2067
https://doi.org/10.1111/1365-2745.13592
|
| 2 |
M O, Martin-Guay A, Paquette J, Dupras D Rivest . The new Green Revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment, 2018, 615 : 767–772
https://doi.org/10.1016/j.scitotenv.2017.10.024
|
| 3 |
A J, Karley A C, Newton R W, Brooker R J, Pakeman D, Guy C, Mitchell P P M, Iannetta M, Weih C, Scherber L Kiær . DIVERSify-ing for sustainability using cereal-legume ‘plant teams’. Aspects of Applied Biology, 2018, 138 : 57–62
|
| 4 |
C, Li E, Hoffland T W, Kuyper Y, Yu C, Zhang H, Li F, Zhang der Werf W van . Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6(6): 653–660
|
| 5 |
C, Li E, Hoffland T W, Kuyper Y, Yu H, Li C, Zhang F, Zhang der Werf W van . Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 2020, 113: 125987
|
| 6 |
J, Brandmeier H, Reininghaus S, Pappagallo A J, Karley L P, Kiær C Scherber . Intercropping in high input agriculture supports arthropod diversity without risking significant yield losses. Basic and Applied Ecology, 2021, 53 : 26–38
https://doi.org/10.1016/j.baae.2021.02.011
|
| 7 |
M, Weih A J, Karley A C, Newton L P, Kiær C, Scherber D, Rubiales E, Adam J, Ajal J, Brandmeier S, Pappagallo A, Villegas-Fernández M, Reckling S Tavoletti . Grain yield stability of cereal-legume intercrops is greater than sole crops in more productive conditions. Agriculture, 2021, 11( 3): 255
https://doi.org/10.3390/agriculture11030255
|
| 8 |
C, Carvell W R, Meek R F, Pywell D, Goulson M Nowakowski . Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. Journal of Applied Ecology, 2007, 44( 1): 29–40
https://doi.org/10.1111/j.1365-2664.2006.01249.x
|
| 9 |
L D, Simba S H, Foord E, Thebault Veen F J F, van G S, Joseph C L Seymour . Indirect interactions between crops and natural vegetation through flower visitors: the importance of temporal as well as spatial spill over. Agriculture, Ecosystems & Environment, 2018, 253 : 148–156
https://doi.org/10.1016/j.agee.2017.11.002
|
| 10 |
S, Gaba R, Perronne G, Fried A, Gardarin F, Bretagnolle L, Biju‐Duval N, Colbach S, Cordeau M, Fernández‐Aparicio C, Gauvrit S, Gibot‐Leclerc J P, Guillemin D, Moreau N, Munier-Jolain F, Strbik X Reboud . Response and effect traits of arable weeds in agro‐ecosystems: a review of current knowledge. Weed Research, 2017, 57( 3): 123–147
https://doi.org/10.1111/wre.12245
|
| 11 |
J, Storkey D B Westbury . Managing arable weeds for biodiversity. Pest Management Science, 2007, 63( 6): 517–523
https://doi.org/10.1002/ps.1375
|
| 12 |
R J, Pakeman R W, Brooker A J, Karley A C, Newton C, Mitchell R L, Hewison J, Pollenus D C, Guy C Schöb . Increased crop diversity reduces the functional space available for weeds. Weed Research, 2020, 60( 2): 121–131
https://doi.org/10.1111/wre.12393
|
| 13 |
T, Cheriere M, Lorin G Corre-Hellou . Species choice and spatial arrangement in soybean-based intercropping: levers that drive yield and weed control. Field Crops Research, 2020, 256 : 107923
https://doi.org/10.1016/j.fcr.2020.107923
|
| 14 |
M Liebman . Weed management: a need for ecological approaches. In: Liebman M, Mohler C L, Staver C P, eds. Ecological Management of Agricultural Weeds. Cambridge: Cambridge University Press, 2001, 1–39
|
| 15 |
P Kanatas . Mini-review: the role of crop rotation intercropping sowing dates and increased crop density towards a sustainable crop and weed management in arable crops. Journal of Agricultural Science, 2020, 31( 1): 22–27
|
| 16 |
A J, Karley J W, Pitchford A E, Douglas W E, Parker J J Howardh . The causes and processes of the mid-summer population crash of the potato aphids Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae). Bulletin of Entomological Research, 2003, 93( 5): 425–438
https://doi.org/10.1079/BER2003252
|
| 17 |
A J, Karley W E, Parker J W, Pitchford A E Douglas . The mid-season crash in aphid population: why and how does it occur. Ecological Entomology, 2004, 29( 4): 383–388
https://doi.org/10.1111/j.0307-6946.2004.00624.x
|
| 18 |
R K, Humphreys G D, Ruxton A J Karley . Drop when the stakes are high: adaptive, flexible use of dropping behaviour by aphids. Behaviour, 2021, 158( 7): 603–623
https://doi.org/10.1163/1568539X-bja10083
|
| 19 |
S, Polin J C, Simon Y Outreman . An ecological cost associated with protective symbionts of aphids. Ecology and Evolution, 2014, 4( 6): 826–830
https://doi.org/10.1002/ece3.991
|
| 20 |
A H, Smith P, Łukasik M P, O’Connor A, Lee G, Mayo M T, Drott S, Doll R, Tuttle R A, Disciullo A, Messina K M, Oliver J A Russell . Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Molecular Ecology, 2015, 24( 5): 1135–1149
https://doi.org/10.1111/mec.13095
|
| 21 |
J M, Slater L, Gilbert D, Johnson A J Karley . Limited effects of the maternal rearing environment on the behaviour and fitness of an insect herbivore and its natural enemy. PLoS One, 2019, 14( 1): e0209965
https://doi.org/10.1371/journal.pone.0209965
|
| 22 |
L, Bedoussac E P, Journet H, Hauggaard-Nielsen C, Naudin G, Corre-Hellou E S, Jensen L, Prieur E Justes . Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agronomy for Sustainable Development, 2015, 35( 3): 911–935
https://doi.org/10.1007/s13593-014-0277-7
|
| 23 |
R J, Cowden A N, Shah L M, Lehmann L P, Kiær C B, Henriksen B B Ghaley . Nitrogen fertilizer effects on pea–barley intercrop productivity compared to sole crops in Denmark. Sustainability, 2020, 12( 22): 9335
https://doi.org/10.3390/su12229335
|
| 24 |
A C, Newton T A, Valentine B M, McKenzie T S, George D C, Guy C A Hackett . Identifying spring barley cultivars with differential response to tillage. Agronomy, 2020, 10( 5): 686
https://doi.org/10.3390/agronomy10050686
|
| 25 |
B M, McKenzie R, Stobart J L, Brown T S, George N, Morris A C, Newton T A, Valentine P D Hallett . Platforms to test and demonstrate sustainable soil management: integration of major UK field experiments. AHDB Final Report RD-2012–3786, Technical Report. ResearchGate, 2017, PR574
|
| 26 |
L, Gatiboni G, Brunetto P S, Pavinato T George . Legacy phosphorus in agriculture: role of past management and perspectives for the future. Frontiers in Earth Science, 2020, 8 : 619935
https://doi.org/10.3389/feart.2020.619935
|
| 27 |
Z, Xu M, Qu S, Liu Y, Duan X, Wang L K, Brown T S, George L, Zhang G Feng . Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems. Soil Use and Management, 2020, 36( 3): 536–546
https://doi.org/10.1111/sum.12585
|
| 28 |
F, Fan B, Yu B, Wang T S, George H, Yin D, Xu D, Li A Song . Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories. Soil Biology & Biochemistry, 2019, 135 : 213–221
https://doi.org/10.1016/j.soilbio.2019.05.001
|
| 29 |
L K, Brown M, Blanz J, Wishart B, Dieterich S B, Schmidt J, Russell P, Martin T S George . Is Bere barley specifically adapted to fertilisation with seaweed as a nutrient source? Nutrient Cycling in Agroecosystems, 2020, 118(2): 149–163
|
| 30 |
L K, Brown C, Kazas J, Stockan C, Hawes M, Stutter C M, Ryan G R, Squire T S George Is green manure from riparian buffer strip species an effective nutrient source for crops? Journal of Environmental Quality, 2019, 48(2): 385–393
|
| 31 |
G D O, Mendes J, Bahri-Esfahani L, Csetenyi S, Hillier T S, George G M Gadd . Chemical and physical mechanisms of fungal bioweathering of rock phosphate. Geomicrobiology Journal, 2021, 38( 5): 384–394
https://doi.org/10.1080/01490451.2020.1863525
|
| 32 |
M, Teodoro L, Trakal B N, Gallagher P, Šimek P, Soudek M, Pohořelý L, Beesley L, Jačka M, Kovář S, Seyedsadr D Mohan . Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. Chemosphere, 2020, 242 : 125255
https://doi.org/10.1016/j.chemosphere.2019.125255
|
| 33 |
L, Trakal I, Raya-Moreno K, Mitchell L Beesley . Stabilization of metal(loid)s in two contaminated agricultural soils: comparing biochar to its non-pyrolysed source material. Chemosphere, 2017, 181 : 150–159
https://doi.org/10.1016/j.chemosphere.2017.04.064
|
| 34 |
K, Mitchell L, Trakal H, Sillerova F J, Avelar-González A L, Guerrero-Barrera R, Hough L Beesley . Mobility of As, Cr and Cu in a contaminated grassland soil in response to diverse organic amendments; a sequential column leaching experiment. Applied Geochemistry, 2018, 88 : 95–102
https://doi.org/10.1016/j.apgeochem.2017.05.020
|
| 35 |
K, Mitchell E, Moreno-Jimenez R, Jones L, Zheng L, Trakal R, Hough L Beesley . Mobility of arsenic, chromium and copper arising from soil application of stabilised aggregates made from contaminated wood ash. Journal of Hazardous Materials, 2020, 393 : 122479
https://doi.org/10.1016/j.jhazmat.2020.122479
|
| 36 |
F, Zheng D, Zhu M, Giles T, Daniell R, Neilson Y G, Zhu X R Yang . Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Science of the Total Environment, 2019, 680 : 70–78
https://doi.org/10.1016/j.scitotenv.2019.04.384
|
| 37 |
Y, Cheng Y, Jiang Y, Wu T A, Valentine H Li . Soil nitrogen status modifies rice root response to nematode-bacteria interactions in the rhizosphere. PLoS One, 2016, 11( 2): e0148021
https://doi.org/10.1371/journal.pone.0148021
|
| 38 |
M M, Mezeli S, Page T S, George R, Neilson A, Mead M S A, Blackwell P M Haygarth . Using a meta-analysis approach to understand complexity in soil biodiversity and phosphorus acquisition in plants. Soil Biology & Biochemistry, 2020, 142 : 107695
https://doi.org/10.1016/j.soilbio.2019.107695
|
| 39 |
G, Boilard R L, Bradley E, Paterson A, Sim L K, Brown T S, George L, Bainard A Carubba . Interaction between root hairs and soil phosphorus on rhizosphere priming of soil organic matter. Soil Biology & Biochemistry, 2019, 135 : 264–266
https://doi.org/10.1016/j.soilbio.2019.05.013
|
| 40 |
S, Robertson-Albertyn Terrazas R, Alegria K, Balbirnie M, Blank A, Janiak I, Szarejko B, Chmielewska J, Karcz J, Morris P E, Hedley T S, George D Bulgarelli . Root hair mutations displace the barley rhizosphere microbiota. Frontiers in Plant Science, 2017, 8 : 1094
https://doi.org/10.3389/fpls.2017.01094
|
| 41 |
J, Zhou X, Chai L, Zhang T S, George F, Wang G Feng . Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. mSystems, 2020, 5( 6): e00929-20
https://doi.org/10.1128/mSystems.00929-20
|
| 42 |
F, Jiang L, Zhang J, Zhou T S, George G Feng . Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytologist, 2021, 230( 1): 304–315
https://doi.org/10.1111/nph.17081
|
| 43 |
E, Paterson A, Sim J, Davidson T J Daniell . Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation. Plant and Soil, 2016, 408( 1−2): 243–254
https://doi.org/10.1007/s11104-016-2928-8
|
| 44 |
L, Mwafulirwa E M, Baggs J, Russell T, George N, Morley A, Sim la Fuente Cantó C, de E Paterson . Barley genotype influences stabilization of rhizodeposition-derived C and soil organic matter mineralization. Soil Biology & Biochemistry, 2016, 95 : 60–69
https://doi.org/10.1016/j.soilbio.2015.12.011
|
| 45 |
J E, Cope G J, Norton T S, George A C Newton . Identifying potential novel resistance to the foliar disease ‘Scald’(Rhynchosporium commune) in a population of Scottish Bere barley landrace (Hordeum vulgare L.). Journal of Plant Diseases and Protection, 2021, 128( 4): 999–1012
https://doi.org/10.1007/s41348-021-00470-x
|
| 46 |
D J, Leybourne T A, Valentine J A H, Robertson E, Pérez-Fernández A M, Main A J, Karley J I B Bos . Defence gene expression and phloem quality contribute to mesophyll and phloem resistance to aphids in wild barley. Journal of Experimental Botany, 2019, 70( 15): 4011–4026
https://doi.org/10.1093/jxb/erz163
|
| 47 |
J E, Cope J, Russell G J, Norton T S, George A C Newton . Assessing the variation in manganese use efficiency traits in Scottish barley landrace Bere (Hordeum vulgare L.). Annals of Botany, 2020, 126( 2): 289–300
https://doi.org/10.1093/aob/mcaa079
|
| 48 |
S B, Schmidt T S, George L K, Brown A, Booth J, Wishart P E, Hedley P, Martin J, Russell S Husted . Ancient barley landraces adapted to marginal soils demonstrate exceptional tolerance to manganese limitation. Annals of Botany, 2019, 123( 5): 831–843
https://doi.org/10.1093/aob/mcy215
|
| 49 |
S, Ruiz N, Koebernick S, Duncan D M, Fletcher C, Scotson A, Boghi M, Marin A G, Bengough T S, George L K, Brown P D, Hallett T Roose . Significance of root hairs at the field scale-modelling root water and phosphorus uptake under different field conditions. Plant and Soil, 2020, 447( 1): 281–304
https://doi.org/10.1007/s11104-019-04308-2
|
| 50 |
L, Kiær C, Scherber J, Brandmeier S, Papagallo A C, Newton A J Karley . Breeding for crop mixtures: opportunities and challenges. In: Proceedings of European Conference on Crop Diversification: Book of Abstracts. Budapest: Zenodo, 2019, 18–21
|
| 51 |
L P, Kiær N R Boesen . Trait plasticity and G×E challenges when breeding for mixture-ideotypes. In: Baćanović-Šišić J, Dennenmoser D, Finckh M R, eds. Proceedings of the EUCARPIA Symposium on Breeding for Diversification 2018. Witzenhausen: EUCARPIA, 2018, 3–6
|
| 52 |
H M, Schneider J P Lynch . Should root plasticity be a crop breeding target? Frontiers in Plant Science, 2020, 11: 546
|
| 53 |
C, Schöb R W, Brooker D Zuppinger-Dingley . Evolution of facilitation requires diverse communities. Nature Ecology & Evolution, 2018, 2( 9): 1381–1385
https://doi.org/10.1038/s41559-018-0623-2
|
| 54 |
C, Hawes P P M, Iannetta G R Squire . Agroecological practices for whole-system sustainability. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2021, 16( 5): 5
https://doi.org/10.1079/PAVSNNR202116005
|
| 55 |
C, Hawes M, Young G, Banks G, Begg A, Christie P P M, Iannetta A J, Karley G R Squire . Whole-systems analysis of environmental and economic sustainability in arable cropping systems: a case study. Agronomy, 2019, 9( 8): 438
https://doi.org/10.3390/agronomy9080438
|
| 56 |
C, Hawes C J, Alexander G S, Begg P P M, Iannetta A J, Karley G R, Squire M Young . Plant responses to an integrated cropping system designed to maintain yield whilst enhancing soil properties and biodiversity. Agronomy, 2018, 8( 10): 229
https://doi.org/10.3390/agronomy8100229
|
| 57 |
C Hawes . Assessing the impact of management interventions in agroecological and conventional cropping systems using indicators of sustainability. In: Wezel A, ed. Agroecological Practices for Sustainable Agriculture: Principles, Applications, and Making the Transition. London: Imperial College Press, 2017, 229–262
|
| 58 |
S, Freitag S R, Verrall S D A, Pont D, McRae J A, Sungurtas R, Palau C, Hawes C J, Alexander J W, Allwood A, Foito D, Stewart L V T Shepherd . Impact of conventional and integrated management systems on the water-soluble vitamin content in potatoes, field beans, and cereals. Journal of Agricultural and Food Chemistry, 2018, 66( 4): 831–841
https://doi.org/10.1021/acs.jafc.7b03509
|
| 59 |
C, Hawes G S, Begg P P M, Iannetta A J, Karley G R Squire . A whole-systems approach for assessing measures to improve arable ecosystem sustainability. Ecosystem Health and Sustainability, 2016, 2( 12): e01252
https://doi.org/10.1002/ehs2.1252
|
| 60 |
R W, Brooker A E, Bennett W F, Cong T J, Daniell T S, George P D, Hallett C, Hawes P P M, Iannetta H G, Jones A J, Karley L, Li B M, McKenzie R J, Pakeman E, Paterson C, Schöb J, Shen G, Squire C A, Watson C, Zhang F, Zhang J, Zhang P J White . Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206( 1): 107–117
https://doi.org/10.1111/nph.13132
|
| 61 |
R B Root . Organisation of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs, 1973, 43( 1): 95–124
https://doi.org/10.2307/1942161
|
| 62 |
D A, Landis S D, Wratten G M Gurr . Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 2000, 45( 1): 175–201
https://doi.org/10.1146/annurev.ento.45.1.175
|
| 63 |
D A, Bohan C, Hawes A J, Haughton I, Denholm G T, Champion J N, Perry S J Clark . Statistical models to evaluate invertebrate-plant trophic interactions in arable systems. Bulletin of Entomological Research, 2007, 97( 3): 265–280
https://doi.org/10.1017/S0007485307004890
|
| 64 |
C, Hawes A J, Haughton D A, Bohan G R Squire . Functional approaches for assessing plant and invertebrate abundance patterns in arable systems. Basic and Applied Ecology, 2009, 10( 1): 34–42
https://doi.org/10.1016/j.baae.2007.11.007
|
| 65 |
B M, Smith N J, Aebischer J, Ewald S, Moreby C, Potter J M Holland . The potential of arable weeds to reverse invertebrate declines and associated ecosystem services in cereal crops. Frontiers in Sustainable Food Systems, 2020, 3 : 118
https://doi.org/10.3389/fsufs.2019.00118
|
| 66 |
J, Storkey P Neve . What good is weed diversity. Weed Research, 2018, 58( 4): 239–243
https://doi.org/10.1111/wre.12310
|
| 67 |
G R, Squire C, Hawes G S, Begg M W Young . Cumulative impact of GM herbicide-tolerant cropping on arable plants assessed through species-based and functional taxonomies. Environmental Science and Pollution Research International, 2009, 16( 1): 85–94
https://doi.org/10.1007/s11356-008-0072-6
|
| 68 |
A J, Karley C, Mitchell C, Hawes M W, Young R W, Brooker R J, Pakeman P P M, Iannetta A C Newton . Crop species mixtures as part of integrated farm management. In: Proceedings of the Crop Production in Northern Britain conference. Dundee: CABI, 2020, 143–147
|
| 69 |
M P D, Garratt S G, Potts G, Banks C, Hawes T D, Breeze R S, O’Connor C Carvell . Capacity and willingness of farmers and citizen scientists to monitor crop pollinators and pollination services. Global Ecology and Conservation, 2019, 20 : e00781
https://doi.org/10.1016/j.gecco.2019.e00781
|
| 70 |
T D, Breeze A P, Bailey K G, Balcombe T, Brereton R, Comont M, Edwards M P, Garratt M, Harvey C, Hawes N, Isaac M, Jitlal C, Jones W E, Kunin P, Lee R K A, Morris A, Musgrove R S, O’Connor J, Peyton S G, Potts S P M, Roberts D B, Roy H E, Roy C Q, Tang A J, Vanbergen C Carvell . Pollinator monitoring more than pays for itself. Journal of Applied Ecology, 2021, 58( 1): 44–57
https://doi.org/10.1111/1365-2664.13755
|
| 71 |
M, Maluk F, Ferrando-Molina del Egido, Lopez , LA, Langarica-Fuentes G G, Yohannes M W, Young P, Martin R, Gantlett G, Kenicer C, Hawes G S, Begg R S, Quilliam G R, Squire J P W, Young P P M, Iannetta E K James . Fields with no recent legume cultivation have sufficient nitrogen-fixing rhizobia for crops of faba bean (Vicia faba L.). Plant and Soil, 2022 [Published Online] doi: 10.1007/s11104–021-05246–8
|
| 72 |
L, Zhang N, Shi J, Fan F, Wang T S, George G Feng . Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions. Environmental Microbiology, 2018, 20( 7): 2639–2651
https://doi.org/10.1111/1462-2920.14289
|
| 73 |
A, Flohre M, Rudnick G, Traser T, Tscharntke T Eggers . Does soil biota benefit from organic farming in complex vs. simple landscapes? Agriculture, Ecosystems & Environment, 2011, 141(1–2): 210–214
|
| 74 |
A F, Quadros M Zimmer . Aboveground macrodetritivores and belowground soil processes: insights on species redundancy. Applied Soil Ecology, 2018, 124 : 83–87
https://doi.org/10.1016/j.apsoil.2017.11.008
|
| 75 |
D A, Bohan S J, Powers G, Champion A J, Haughton C, Hawes G, Squire J, Cussans S K Mertens . Modelling rotations: can crop sequences explain arable weed seedbank abundance? Weed Research, 2011, 51(4): 422–432
|
| 76 |
E Oerke . Crop losses to pests. Journal of Agricultural Science, 2006, 144( 1): 31–43
https://doi.org/10.1017/S0021859605005708
|
| 77 |
G S, Begg S M, Cook R, Dye M, Ferrante P, Franck C, Lavigne G L, Lövei A, Mansion-Vaquie J K, Pell S, Petit N, Quesada B, Ricci S D, Wratten A N E Birch . A functional overview of conservation biological control. Crop Protection, 2017, 97 : 145–158
https://doi.org/10.1016/j.cropro.2016.11.008
|
| 78 |
E A, Martin M, Dainese Y, Clough A, Báldi R, Bommarco V, Gagic M P D, Garratt A, Holzschuh D, Kleijn A, Kovács-Hostyánszki L, Marini S G, Potts H G, Smith Hassan D, Al M, Albrecht G K S, Andersson J D, Asís S, Aviron M V, Balzan L, Baños-Picón I, Bartomeus P, Batáry F, Burel B, Caballero-López E D, Concepción V, Coudrain J, Dänhardt M, Diaz T, Diekötter C F, Dormann R, Duflot M H, Entling N, Farwig C, Fischer T, Frank L A, Garibaldi J, Hermann F, Herzog D, Inclán K, Jacot F, Jauker P, Jeanneret M, Kaiser J, Krauss Féon V, Le J, Marshall A C, Moonen G, Moreno V, Riedinger M, Rundlöf A, Rusch J, Scheper G, Schneider C, Schüepp S, Stutz L, Sutter G, Tamburini C, Thies J, Tormos T, Tscharntke M, Tschumi D, Uzman C, Wagner M, Zubair-Anjum I Steffan-Dewenter . The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22( 7): 1083–1094
https://doi.org/10.1111/ele.13265
|
| 79 |
S, Redlich E A, Martin I Steffan-Dewenter . Landscape-level crop diversity benefits biological pest control. Journal of Applied Ecology, 2018, 55( 5): 2419–2428
https://doi.org/10.1111/1365-2664.13126
|
| 80 |
B, Feit N, Blüthgen E, Daouti C, Straub M, Traugott M Jonsson . Landscape complexity promotes resilience of biological pest control to climate change. Proceedings of the Royal Society B, 2021, 288( 1951): 20210547
|
| 81 |
B, Ricci C, Lavigne A, Alignier S, Aviron L, Biju-Duval J C, Bouvier J P, Choisis P, Franck A, Joannon S, Ladet F, Mezerette M, Plantegenest G, Savary C, Thomas A, Vialatte S Petit . Local pesticide use intensity conditions landscape effects on biological pest control. Proceedings of the Royal Society B, 2019, 286( 1904): 20182898
|
| 82 |
A F G Dixon . Aphid ecology: an optimization approach. 2nd ed. Dordrecht: Springer Science & Business Media LLC, 1998
|
| 83 |
B, Fenton G, Malloch J A, Woodford S P, Foster J, Anstead I, Denholm L, King J Pickup . The attack of the clones: tracking the movement of insecticide-resistant peach-potato aphids Myzus persicae (Hemiptera: Aphididae). Bulletin of Entomological Research, 2005, 95( 5): 483–494
https://doi.org/10.1079/BER2005380
|
| 84 |
L E, Walsh O, Schmidt S P, Foster C, Varis J, Grant G L, Malloch M T Gaffney . Evaluating the impact of pyrethroid insecticide resistance on reproductive fitness in Sitobion avenae. Annals of Applied Biology, 2021 [Published Online] doi: 10.1111/aab.12738
|
| 85 |
J, Guo S, Hatt K, He J, Chen F, Francis Z Wang . Nine facultative endosymbionts in aphids. A review. Journal of Asia-Pacific Entomology, 2017, 20( 3): 794–801
https://doi.org/10.1016/j.aspen.2017.03.025
|
| 86 |
S E, Zytynska K, Tighiouart E Frago . Benefits and costs of hosting facultative symbionts in plant-sucking insects: a meta-analysis. Molecular Ecology, 2021, 30( 11): 2483–2494
https://doi.org/10.1111/mec.15897
|
| 87 |
B, Fenton J T, Margaritopoulos G L, Malloch S P Foster . Micro-evolutionary change in relation to insecticide resistance in the peach-potato aphid. Myzus persicae. Ecological Entomology, 2010, 35( s1): 131–146
https://doi.org/10.1111/j.1365-2311.2009.01150.x
|
| 88 |
H V, Clarke S P, Foster L, Oliphant E W, Waters A J Karley . Co-occurrence of defensive traits in the potato aphid Macrosiphum euphorbiae. Ecological Entomology, 2018, 43(4): 538−542
|
| 89 |
D J, Leybourne J I B, Bos T A, Valentine A J Karley . The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi. Insect Science, 2020a, 27(1): 69–85
|
| 90 |
D J, Leybourne T A, Valentine J I B, Bos A J Karley . A fitness cost resulting from Hamiltonella defensa infection is associated with altered probing and feeding behaviour in Rhopalosiphum padi. Journal of Experimental Biology, 2020b, 223(Pt 1): jeb207936
|
| 91 |
G E, Jackson G, Malloch L, McNamara D Little . Grain aphids (Sitobion avenae) with knockdown resistance (kdr) to insecticide exhibit fitness trade-offs, including increased vulnerability to the natural enemy Aphidius ervi. PLoS One, 2020, 15(11): e0230541
|
| 92 |
R W, Brooker R, Hewison C, Mitchell A C, Newton R J, Pakeman C, Schöb A J Karley . Does crop genetic diversity support positive biodiversity effects under experimental drought? Basic and Applied Ecology, 2021b, 56: 431–445
|
| 93 |
D J, Leybourne K F, Preedy T A, Valentine J I B, Bos A J Karley . Drought has negative consequences on aphid fitness and plant vigor: insights from a meta-analysis. Ecology and Evolution, 2021, 11( 17): 11915–11929
https://doi.org/10.1002/ece3.7957
|
| 94 |
R N, Wade A J, Karley S N, Johnson S E Hartley . Impact of predicted precipitation scenarios on multitrophic interactions. Functional Ecology, 2017, 31( 8): 1647–1658
https://doi.org/10.1111/1365-2435.12858
|
| 95 |
K F, Preedy M A J, Chaplain D J, Leybourne G, Marion A J Karley . Learning-induced switching costs in a parasitoid can maintain diversity of host aphid phenotypes although biocontrol is destabilized under abiotic stress. Journal of Animal Ecology, 2020, 89( 5): 1216–1229
https://doi.org/10.1111/1365-2656.13189
|
| 96 |
M, Lee Y, Kim J J, Park K Cho . Prediction of changing predator–prey interactions under warming: a simulation study using two aphid–ladybird systems. Ecological Research, 2021, 36( 5): 788–802
https://doi.org/10.1111/1440-1703.12243
|
| 97 |
A, Teixeira P, Iannetta K, Binnie T A, Valentine P Toorop . Myxospermous seed-mucilage quantity correlates with environmental gradients indicative of water-deficit stress: Plantago species as a model. Plant and Soil, 2020, 446( 1−2): 343–356
https://doi.org/10.1007/s11104-019-04335-z
|
| 98 |
J L, Brown R, Stobart P D, Hallett N L, Morris T S, George A C, Newton T A, Valentine B M McKenzie . Variable impacts of reduced and zero tillage on soil carbon storage across 4–10 years of UK field experiments. Journal of Soils and Sediments, 2021, 21( 2): 890–904
https://doi.org/10.1007/s11368-020-02799-6
|
| 99 |
J E, Holland A E, Bennett A C, Newton P J, White B M, McKenzie T S, George R J, Pakeman J S, Bailey D A, Fornara R C Hayes . Liming impacts on soils, crops and biodiversity in the UK: a review. Science of the Total Environment, 2018, 610–611: 316–332
|
| 100 |
R, Neilson S, Caul F C, Fraser D, King S M, Mitchell D M, Roberts M E Giles . Microbial community size is a potential predictor of nematode functional group in limed grasslands. Applied Soil Ecology, 2020, 156 : 103702
https://doi.org/10.1016/j.apsoil.2020.103702
|
| 101 |
M B, Herold M E, Giles C J, Alexander E M, Baggs T J Daniell . Variable response of nirK and nirS containing denitrifier communities to long-term pH manipulation and cultivation. FEMS Microbiology Letters, 2018, 365( 7): fny035
https://doi.org/10.1093/femsle/fny035
|
| 102 |
R, Neilson D M, Roberts K W, Loades A, Lozana T J Daniell . Healthy soils for crop production. In: Proceedings Crop Production in Northern Britain 2018. Norwich: Page Bros (Norwich) Ltd., 2018, 17–20
|
| 103 |
R, Neilson A, Lilly M, Aitkenhead R, Artz N, Baggaley M E, Giles J, Holland K, Loades P, Ovando M, Rivington M, Roberts J Yeluripati . Measuring the vulnerability of Scottish soils to a changing climate. ClimateXChange Report. Dundee: The James Hutton Institute, 2020
|
| 104 |
B C, Ball R M L, Guimarães J M, Cloy P R, Hargreaves T G, Shepherd B M McKenzie . Visual soil evaluation: a summary of some applications and potential developments for agriculture. Soil & Tillage Research, 2017, 173 : 114–124
https://doi.org/10.1016/j.still.2016.07.006
|
| 105 |
C J, Murphy E M, Baggs N, Morley D P, Wall E Paterson . Nitrogen availability alters rhizosphere processes mediating soil organic matter mineralisation. Plant and Soil, 2017, 417( 1−2): 499–510
https://doi.org/10.1007/s11104-017-3275-0
|
| 106 |
E A Frison . IPES-Food. From uniformity to diversity: a paradigm shift from industrial agriculture to diversified agroecological systems. Louvain-la-Neuve. Belgium: IPES, 2016, 96
|
| 107 |
D, Renard D Tilman . National food production stabilized by crop diversity. Nature, 2019, 571( 7764): 257–260
https://doi.org/10.1038/s41586-019-1316-y
|
| 108 |
C K, Khoury A D, Bjorkman H, Dempewolf J, Ramirez-Villegas L, Guarino A, Jarvis L H, Rieseberg P C Struik . Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111( 11): 4001–4006
https://doi.org/10.1073/pnas.1313490111
|
| 109 |
M, Rivington R, King D, Duckett P, Iannetta T G, Benton P J, Burgess C, Hawes L, Wellesley J G, Polhill M, Aitkenhead L M, Lozada-Ellison G, Begg A G, Williams A, Newton A, Lorenzo-Arribas R, Neilson C, Watts J, Harris K, Loades D, Stewart D, Wardell-Johnson G, Gandossi E, Udugbezi J A, Hannam C Keay . UK food and nutrition security during and after the COVID-19 pandemic. Nutrition Bulletin, 2021, 46( 1): 88–97
https://doi.org/10.1111/nbu.12485
|
| 110 |
H, Zhang Y, Li J K Zhu . Developing naturally stress-resistant crops for a sustainable agriculture. Nature Plants, 2018, 4( 12): 989–996
https://doi.org/10.1038/s41477-018-0309-4
|
| 111 |
H, Ferreira E, Pinto M W Vasconcelos . Legumes as a cornerstone of the transition towards more sustainable agri-food systems and diets in Europe. Frontiers in Sustainable Food Systems, 2021, 5 : 694121
https://doi.org/10.3389/fsufs.2021.694121
|
| 112 |
P P M, Iannetta C, Hawes G S, Begg H, Maaß G, Ntatsi D, Savvas M, Vasconcelos K, Hamann M, Williams D, Styles L, Toma S, Shrestha B, Balázs E, Kelemen M, Debeljak A, Trajanov R, Vickers R M Rees . A multifunctional solution for wicked problems: value-chain wide facilitation of legumes cultivated at bioregional scales is necessary to address the climate-biodiversity-nutrition nexus. Frontiers in Sustainable Food Systems, 2021, 5 : 692137
https://doi.org/10.3389/fsufs.2021.692137
|
| 113 |
A M, Villegas-Fernández D Rubiales . Trends and perspectives for faba bean production in the Mediterranean Basin. Legume Perspectives, 2015, 10 : 31–33
|
| 114 |
M, Reckling T F, Döring G, Bergkvist F L, Stoddard C A, Watson S, Seddig F M, Chmielewski J Bachinger . Grain legume yields are as stable as other spring crops in long-term experiments across northern Europe. Agronomy for Sustainable Development, 2018, 38( 6): 63
https://doi.org/10.1007/s13593-018-0541-3
|
| 115 |
L Montanarella . Trends in land degradation in Europe. In: Sivakumar M V K, Ndiang’ui N, eds. Climate and land degradation. Berlin, Heidelberg: Springer, 2007, 83–104
|
| 116 |
L R Oldeman . Global extent of soil degradation. In: Bi-Annual Report 1991–1992/ISRIC. Wageningen: ISRIC, 1992, 19–36
|
| 117 |
N, Droste W, May Y, Clough G, Börjesson M, Brady K Hedlund . Soil carbon insures arable crop production against increasing adverse weather due to climate change. Environmental Research Letters, 2020, 15 : 124034
https://doi.org/10.1088/1748-9326/abc5e3
|
| 118 |
P P M, Iannetta M, Young J, Bachinger G, Bergkvist J, Doltra R J, Lopez-Bellido M, Monti V A, Pappa M, Reckling C F E, Topp R L, Walker R M, Rees C A, Watson E K, James G R, Squire G S Begg . A comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: the potential role of biological nitrogen fixation. Frontiers in Plant Science, 2016, 7 : 1700
https://doi.org/10.3389/fpls.2016.01700
|
| 119 |
G R, Squire N, Quesada G S, Begg P P M Iannetta . Transitions to greater legume inclusion in cropland: defining opportunities and estimating benefits for the nitrogen economy. Food and Energy Security, 2019, 8( 4): e00175
https://doi.org/10.1002/fes3.175
|
| 120 |
I, Leinonen P P M, Iannetta R M, Rees W, Russell C, Watson A P Barnes . Lysine supply is a critical factor in achieving sustainable global protein economy. Frontiers in Sustainable Food Systems, 2019, 3 : 27
https://doi.org/10.3389/fsufs.2019.00027
|
| 121 |
I, Leinonen P P M, Iannetta M, MacLeod R M, Rees W, Russell C, Watson A P Barnes . Regional land use efficiency and nutritional quality of protein production. Global Food Security, 2020, 26 : 100386
https://doi.org/10.1016/j.gfs.2020.100386
|
| 122 |
T, Lienhardt K, Black S, Saget M P, Costa D, Chadwick R M, Rees M, Williams C, Spillane P M, Iannetta G, Walker D Styles . Just the tonic! Legume biorefining for alcohol has the potential to reduce Europe’s protein deficit and mitigate climate change. Environment International, 2019, 130: 104870
|
| 123 |
T, Lienhardt K, Black S, Saget M P, Costa D, Chadwick R, Rees M, Williams C, Spillane P, Iannetta G, Walker D Styles . Data for life cycle assessment of legume biorefining for alcohol. Data in Brief, 2019, 25: 104242
|
| 124 |
K, Black A, Tziboula‐Clarke P J, White P P M, Iannetta G Walker . Optimised processing of faba bean (Vicia faba L.) kernels as a brewing adjunct. Journal of the Institute of Brewing, 2021, 127( 1): 13–20
https://doi.org/10.1002/jib.632
|
| 125 |
J E, Hermansen U, Jørgensen P E, Laerke K, Manevski B, Boelt S K, Jensen M R, Weisbjerg T K, Dalsgaard M, Danielsen T, Asp M, Amby-Jensen C A G, Sørensen M V, Jensen M, Gylling J, Lindedam M, Lübeck E Fog . Green biomass: protein production through biorefining. Danish Centre for Food & Agriculture (DCA) Report No.93. Aarhus: Aarhus University, 2017
|
| 126 |
Ermgassen E K, zu B, Phalan R E, Green A Balmford . Reducing the land use of EU pork production: where there’s swill, there’s a way. Food Policy, 2016, 58 : 35–48
https://doi.org/10.1016/j.foodpol.2015.11.001
|
| 127 |
H, Westhoek T, Rood den Berg M, van J, Janse D, Nijdam M, Reudink E Stehfest . The protein puzzle: the consumption and production of meat, dairy and fish in the European Union. PBL Netherlands Environmental Assessment Agency, 2011, 123–144
|
| 128 |
P P M, Iannetta F, Muel A, Charlton E Rosa . Legume Value Chain: market requirements and economic impact. The International Legume Society, 2017, 14
|
| 129 |
M W, Vasconcelos B, Balázs E, Kelemen G R, Squire P P M Iannetta . Editorial: transitions to sustainable food and feed systems. Frontiers in Plant Science, 2019, 10 : 1283
https://doi.org/10.3389/fpls.2019.01283
|
| 130 |
M W, Vasconcelos A M, Gomes E, Pinto H, Ferreira E D F, Vieira A P, Martins C S, Santos B, Balázs E, Kelemen K T, Hamann M, Williams P P M Iannetta . The push, pull and enabling capacities necessary for legume grain inclusion into sustainable agri-food systems and healthy diets. In: Biesalski H K, ed. Hidden Hunger and the Transformation of Food Systems. How to Combat the Double Burden of Malnutrition? Basel, Karger: World Review of Nutrition and Dietetics, 2020, 193–211
|
| 131 |
M W, Vasconcelos M A, Grusak E, Pinto A, Gomes H, Ferreira B, Balázs T, Centofanti G, Ntatsi D, Savvas A, Karkanis M, Williams A, Vandenberg L, Toma S, Shrestha F, Akaichi Barrios C, Ore S, Gruber E K, James M, Maluk A, Karley P Iannetta . The biology of legumes and their agronomic, economic, and social impact. In: Hasanuzzaman M, Araújo S, Gill S S, eds. The Plant Family Fabaceae. Singapore: Springer 2020, 3–25
|
| 132 |
P R, Shukla J, Skea Buendia E, Calvo V, Masson-Delmotte H O, Pörtner D C, Roberts P, Zhai R, Slade S, Connors Diemen R, Van M Ferrat . Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Switzerland: Intergovermental Panel of Climate Change, 2019
|
| 133 |
P, Alexander C, Brown A, Arneth J, Finnigan M D A Rounsevell . Human appropriation of land for food: the role of diet. Global Environmental Change, 2016, 41 : 88–98
https://doi.org/10.1016/j.gloenvcha.2016.09.005
|
| 134 |
M, Springmann D, Mason-D’Croz S, Robinson T, Garnett H C J, Godfray D, Gollin M, Rayner P, Ballon P Scarborough . Global and regional health effects of future food production under climate change: a modelling study. Lancet, 2016, 387( 10031): 1937–1946
https://doi.org/10.1016/S0140-6736(15)01156-3
|
| 135 |
W, Willett J, Rockström B, Loken M, Springmann T, Lang S, Vermeulen T, Garnett D, Tilman F, DeClerck A, Wood M, Jonell M, Clark L J, Gordon J, Fanzo C, Hawkes R, Zurayk J A, Rivera Vries W, De Sibanda L, Majele A, Afshin A, Chaudhary M, Herrero R, Agustina F, Branca A, Lartey S, Fan B, Crona E, Fox V, Bignet M, Troell T, Lindahl S, Singh S E, Cornell Reddy K, Srinath S, Narain S, Nishtar C J L Murray . Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet, 2019, 393( 10170): 447–492
https://doi.org/10.1016/S0140-6736(18)31788-4
|
| 136 |
B, Balázs E, Kelemen T, Centofanti M W, Vasconcelos P P M Iannetta . Integrated policy analysis to identify transformation paths to more sustainable legume-based food and feed value-chains in Europe. Agroecology and Sustainable Food Systems, 2021, 45( 6): 931–953
https://doi.org/10.1080/21683565.2021.1884165
|
| 137 |
C, Schöb S, Hortal A J, Karley L, Morcillo A C, Newton R J, Pakeman J R, Powell I C, Anderson R W Brooker . Species but not genotype diversity strongly impacts the establishment of rare colonisers. Functional Ecology, 2017, 31( 7): 1462–1470
https://doi.org/10.1111/1365-2435.12848
|
| 138 |
R W, Brooker A J, Karley L, Morcillo A C, Newton R J, Pakeman C Schöb . Crop presence, but not genetic diversity, impacts on the rare arable plant Valerianella rimosa. Plant Ecology & Diversity, 2018, 10(5–6): 5–6
|
| 139 |
N, Engbersen R W, Brooker L, Stefan B, Studer C Schöb . Temporal differentiation of resource capture and biomass accumulation as a driver of yield increase in intercropping. Frontiers in Plant Science, 2021, 12 : 668803
https://doi.org/10.3389/fpls.2021.668803
|
| 140 |
E J, Schofield J K, Rowntree E, Paterson R W Brooker . Temporal dynamics of resource capture: a missing factor in ecology? Trends in Ecology & Evolution, 2018, 33(4): 277–286
|
| 141 |
E J, Schofield R W, Brooker J K, Rowntree E A C, Price F Q, Brearley E Paterson . Plant-plant competition influences temporal dynamism of soil microbial enzyme activity. Soil Biology & Biochemistry, 2019a, 139: 107615
|
| 142 |
E J, Schofield J K, Rowntree E, Paterson M J, Brewer E A C, Price F Q, Brearley R W Brooker . Cultivar differences and impact of plant-plant competition on temporal patterns of nitrogen and biomass accumulation. Frontiers in Plant Science, 2019, 10 : 215
https://doi.org/10.3389/fpls.2019.00215
|
| 143 |
F K D C, Félix L A J, Letti de Melo Pereira G, Vinícius P G B, Bonfim V T, Soccol C R Soccol . L-lysine production improvement: a review of the state of the art and patent landscape focusing on strain development and fermentation technologies. Critical Reviews in Biotechnology, 2019, 39( 8): 1031–1055
https://doi.org/10.1080/07388551.2019.1663149
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|