Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2021, Vol. 8 Issue (3) : 362-372    https://doi.org/10.15302/J-FASE-2021392
REVIEW
DESIGNING DIVERSIFIED CROPPING SYSTEMS IN CHINA: THEORY, APPROACHES AND IMPLEMENTATION
Wen-Feng CONG, Chaochun ZHANG, Chunjie LI, Guangzhou WANG, Fusuo ZHANG()
College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions (Ministry of Education), China Agricultural University, Beijing 100193, China.
 Download: PDF(1019 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

•Agricultural green transformation of China requires restructuring of cropping systems.

•Ecosystem services enhanced by crop diversification is key to sustainable agriculture.

•Crop diversification improve ecosystem services at field, farm and landscape scales.

•Cropping system design should meet regional characteristics and socio-economic demand.

Intensive agriculture in China over recent decades has successfully realized food security but at the expense of negative environmental impacts. Achieving green transformation of agriculture in China requires fundamental restructuring of cropping systems. This paper presents a theoretical framework of theory, approaches and implementation of crop diversification schemes in China. Initially, crop diversification schemes require identifying multiple objectives by simultaneously considering natural resources, limiting factors/constraints, and social and economic demands of different stakeholders. Then, it is necessary to optimize existing and/or design novel cropping systems based upon farming practices and ecological principles, and to strengthen targeted ecosystem services to achieve the identified objectives. Next, the resulting diversified cropping systems need to be evaluated and examined by employing experimental and modeling approaches. Finally, a strategic plan, as presented in this paper, is needed for implementing an optimized crop diversification in China based upon regional characteristics with the concurrent objectives of safe, nutritious food production and environmental protection. The North China Plain is used as an example to illustrate the strategic plan to optimize and design diversified cropping systems. The implementation of crop diversification in China will set an example for other countries undergoing agricultural transition, and contribute to global sustainable development.

Keywords Agriculture Green Development      crop diversification      cropping system modeling      ecosystem services      sustainable agriculture     
Corresponding Author(s): Fusuo ZHANG   
Just Accepted Date: 26 March 2021   Online First Date: 26 April 2021    Issue Date: 26 September 2021
 Cite this article:   
Wen-Feng CONG,Chaochun ZHANG,Chunjie LI, et al. DESIGNING DIVERSIFIED CROPPING SYSTEMS IN CHINA: THEORY, APPROACHES AND IMPLEMENTATION[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 362-372.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021392
https://academic.hep.com.cn/fase/EN/Y2021/V8/I3/362
Fig.1  Framework of crop diversification schemes.
Fig.2  A portfolio of modeling approaches for crop diversification. This figure is modified based upon course materials from Jeroen Groot (Wageningen University).
Fig.3  The strategic planning for implementing crop diversification in China.
Fig.4  Three steps to implement crop diversification on the North China Plain.
1 P A Matson, W J Parton, A G Power, M J Swift. Agricultural intensification and ecosystem properties. Science, 1997, 277(5325): 504–509
https://doi.org/10.1126/science.277.5325.504 pmid: 20662149
2 D Tilman, P B Reich, J Knops, D Wedin, T Mielke, C Lehman. Diversity and productivity in a long-term grassland experiment. Science, 2001, 294(5543): 843–845
https://doi.org/10.1126/science.1060391 pmid: 11679667
3 S Gaba, F Lescourret, S Boudsocq, J Enjalbert, P Hinsinger, E P Journet, M L Navas, J Wery, G Louarn, E Malezieux, E Pelzer, M Prudent, H Ozier-Lafontaine. Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agronomy for Sustainable Development, 2015, 35(2): 607–623
https://doi.org/10.1007/s13593-014-0272-z
4 D Renard, D Tilman. National food production stabilized by crop diversity. Nature, 2019, 571(7764): 257–260
https://doi.org/10.1038/s41586-019-1316-y pmid: 31217589
5 J H Guo, X J Liu, Y Zhang, J L Shen, W X Han, W F Zhang, P Christie, K W T Goulding, P M Vitousek, F S Zhang. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008–1010
https://doi.org/10.1126/science.1182570 pmid: 20150447
6 K V Grebmer, J Bernstein, D Nabarro, N Prasai, S Amin, Y Yohannes, A Sonntag, F Patterson, O Towey, J Thompson. 2016 Global Hunger Index: getting to zero hunger. Washington: International Food Policy Research Institute, 2016
7 D Beillouin, T Ben-Ari, D Makowski. Evidence map of crop diversification strategies at the global scale. Environmental Research Letters, 2019, 14(12): 123001
8 X Chen, Z Cui, M Fan, P Vitousek, M Zhao, W Ma, Z Wang, W Zhang, X Yan, J Yang, X Deng, Q Gao, Q Zhang, S Guo, J Ren, S Li, Y Ye, Z Wang, J Huang, Q Tang, Y Sun, X Peng, J Zhang, M He, Y Zhu, J Xue, G Wang, L Wu, N An, L Wu, L Ma, W Zhang, F Zhang. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486–489
https://doi.org/10.1038/nature13609 pmid: 25186728
9 F S Zhang, J B Shen, J L Zhang, Y M Zuo, L Li, X P Chen. Chapter One-Rhizosphere Processes and Management for Improving Nutrient Use Efficiency and Crop Productivity: Implications for China. Advances in Agronomy, 2010, 107: 1–32
https://doi.org/10.1016/S0065-2113(10)07001-X
10 Z Cui, H Zhang, X Chen, C Zhang, W Ma, C Huang, W Zhang, G Mi, Y Miao, X Li, Q Gao, J Yang, Z Wang, Y Ye, S Guo, J Lu, J Huang, S Lv, Y Sun, Y Liu, X Peng, J Ren, S Li, X Deng, X Shi, Q Zhang, Z Yang, L Tang, C Wei, L Jia, J Zhang, M He, Y Tong, Q Tang, X Zhong, Z Liu, N Cao, C Kou, H Ying, Y Yin, X Jiao, Q Zhang, M Fan, R Jiang, F Zhang, Z Dou. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555(7696): 363–366
https://doi.org/10.1038/nature25785 pmid: 29513654
11 H Ying, Y Xue, K Yan, Y Wang, Y Yin, Z Liu, Q Zhang, X Tian, Z Li, Y Liu, Z Cui. Safeguarding food supply and groundwater safety for maize production in China. Environmental Science & Technology, 2020, 54(16): 9939–9948
https://doi.org/10.1021/acs.est.9b05642 pmid: 32706248
12 M O Martin-Guay, A Paquette, J Dupras, D Rivest. The new Green Revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment, 2018, 615: 767–772
https://doi.org/10.1016/j.scitotenv.2017.10.024 pmid: 28992501
13 C Li, E Hoffland, T W Kuyper, Y Yu, C Zhang, H Li, F Zhang, W van der Werf. Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6(6): 653–660
https://doi.org/10.1038/s41477-020-0680-9 pmid: 32483328
14 Z Xu, C J Li, C C Zhang, Y Yu, W van der Werf, F S Zhang. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: a meta-analysis. Field Crops Research, 2020, 246: 107661
https://doi.org/10.1016/j.fcr.2019.107661
15 X Y Tang, C C Zhang, Y Yu, J B Shen, W van der Werf, F S Zhang. Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis. Plant and Soil, 2020 doi: 10.1007/s11104-020-04768-x
16 L Yang, L Xu, B Liu, Q Zhang, Y F Pan, Q Li, H Q Li, Y H Lu. Non-crop habitats promote the abundance of predatory ladybeetles in maize fields in the agricultural landscape of northern China. Agriculture, Ecosystems & Environment, 2019, 277: 44–52
https://doi.org/10.1016/j.agee.2019.03.008
17 M B Lee, E Goodale. Crop heterogeneity and non-crop vegetation can enhance avian diversity in a tropical agricultural landscape in southern China. Agriculture, Ecosystems & Environment, 2018, 265: 254–263
https://doi.org/10.1016/j.agee.2018.06.016
18 G M Gurr, Z Lu, X Zheng, H Xu, P Zhu, G Chen, X Yao, J Cheng, Z Zhu, J L Catindig, S Villareal, H Van Chien, Q Cuong, C Channoo, N Chengwattana, L P Lan, H Hai, J Chaiwong, H I Nicol, D J Perovic, S D Wratten, K L Heong. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nature Plants, 2016, 2(3): 16014
https://doi.org/10.1038/nplants.2016.14 pmid: 27249349
19 E Malézieux, Y Crozat, C Dupraz, M Laurans, D Makowski, H Ozier-Lafontaine, B Rapidel, S Tourdonnet, M Valantin-Morison. Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 2009, 29(1): 43–62
https://doi.org/10.1051/agro:2007057
20 J Zhao, Y D Yang, K Zhang, J Jeong, Z H Zeng, H D Zang. Does crop rotation yield more in China? A meta-analysis. Field Crops Research, 2020, 245: 107659
https://doi.org/10.1016/j.fcr.2019.107659
21 M D McDaniel, L K Tiemann, A S Grandy. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 2014, 24(3): 560–570
https://doi.org/10.1890/13-0616.1 pmid: 24834741
22 M R Bellon, B H Kotu, C Azzarri, F Caracciolo. To diversify or not to diversify, that is the question. Pursuing agricultural development for smallholder farmers in marginal areas of Ghana. World Development, 2020, 125: 104682
https://doi.org/10.1016/j.worlddev.2019.104682 pmid: 31902972
23 M Quemada, M Baranski, M N J Nobel-De Lange, A Vallejo, J M Cooper. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agriculture, Ecosystems & Environment, 2013, 174: 1–10
https://doi.org/10.1016/j.agee.2013.04.018
24 L L Mao, L Z Zhang, W Q Li, W van der Werf, J H Sun, H Spiertz, L Li. Yield advantage and water saving in maize/pea intercrop. Field Crops Research, 2012, 138: 11–20
https://doi.org/10.1016/j.fcr.2012.09.019
25 J H Ren, L Z Zhang, Y Duan, J Zhang, J B Evers, Y Zhang, Z C Su, W van der Werf. Intercropping potato (Solanum tuberosum L.) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions. Field Crops Research, 2019, 240: 168–176
https://doi.org/10.1016/j.fcr.2018.12.002
26 W Bai, Z X Sun, J M Zheng, G J Du, L S Feng, Q Cai, N Yang, C Feng, Z Zhang, J B Evers, W van der Werf, L Z Zhang. Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agricultural Water Management, 2016, 178: 281–290
https://doi.org/10.1016/j.agwat.2016.10.007
27 M Raseduzzaman, E S Jensen. Does intercropping enhance yield stability in arable crop production? A meta-analysis. European Journal of Agronomy, 2017, 91: 25–33
https://doi.org/10.1016/j.eja.2017.09.009
28 S Knapp, M G A van der Heijden. A global meta-analysis of yield stability in organic and conservation agriculture. Nature Communications, 2018, 9(1): 3632
https://doi.org/10.1038/s41467-018-05956-1 pmid: 30194344
29 J C J Groot, G J M Oomen, W A H Rossing. Multi-objective optimization and design of farming systems. Agricultural Systems, 2012, 110: 63–77
https://doi.org/10.1016/j.agsy.2012.03.012
30 T Bonaudo, A B Bendahan, R Sabatier, J Ryschawy, S Bellon, F Leger, D Magda, M Tichit. Agroecological principles for the redesign of integrated crop-livestock systems. European Journal of Agronomy, 2014, 57: 43–51
https://doi.org/10.1016/j.eja.2013.09.010
31 C Huang, Q Liu, N Heerink, T Stomph, B Li, R Liu, H Zhang, C Wang, X Li, C Zhang, W van der Werf, F Zhang. Economic performance and sustainability of a novel intercropping system on the North China Plain. PLoS One, 2015, 10(8): e0135518
https://doi.org/10.1371/journal.pone.0135518 pmid: 26275297
32 J Rosa-Schleich, J Loos, O Mußhoff, T Tscharntke. Ecological-economic trade-offs of Diversified Farming Systems—A review. Ecological Economics, 2019, 160: 251–263
https://doi.org/10.1016/j.ecolecon.2019.03.002
33 G Z Wang, H G Li, P Christie, F S Zhang, J L Zhang, J D Bever. Plant–soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant and Soil, 2017, 415(1–2): 1–12
https://doi.org/10.1007/s11104-016-3139-z
34 M A Boudreau. Diseases in intercropping systems. Annual Review of Phytopathology, 2013, 51: 499–519
35 M Liebman, E Dyck. Crop rotation and intercropping strategies for weed management. Ecological Applications, 1993, 3(1): 92–122
36 J F Tooker, S D Frank. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology, 2012, 49(5): 974–985
https://doi.org/10.1111/j.1365-2664.2012.02173.x
37 B R Trenbath. Intercropping for the management of pests and diseases. Field Crops Research, 1993, 34(3–4): 381–405
https://doi.org/10.1016/0378-4290(93)90123-5
38 C C Zhang, Y Dong, L Tang, Y Zheng, D Makowski, Y Yu, F S Zhang, W van der Werf. Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input: a meta-analysis. European Journal of Plant Pathology, 2019, 154(4): 931–942
https://doi.org/10.1007/s10658-019-01711-4
39 Y Zhu, H Chen, J Fan, Y Wang, Y Li, J Chen, J Fan, S Yang, L Hu, H Leung, T W Mew, P S Teng, Z Wang, C C Mundt. Genetic diversity and disease control in rice. Nature, 2000, 406(6797): 718–722
https://doi.org/10.1038/35021046 pmid: 10963595
40 M Lechenet, D Makowski, G Py, N Munier-Jolain. Profiling farming management strategies with contrasting pesticide use in France. Agricultural Systems, 2016, 149: 40–53
https://doi.org/10.1016/j.agsy.2016.08.005
41 S Dogliotti, M K van Ittersum, W A H Rossing. Influence of farm resource endowment on possibilities for sustainable development: a case study for vegetable farms in South Uruguay. Journal of Environmental Management, 2006, 78(3): 305–315
https://doi.org/10.1016/j.jenvman.2005.04.025 pmid: 16154255
42 L W Bell, A D Moore, J A Kirkegaard. Evolution in crop-livestock integration systems that improve farm productivity and environmental performance in Australia. European Journal of Agronomy, 2014, 57: 10–20
https://doi.org/10.1016/j.eja.2013.04.007
43 N Estrada-Carmona, J E Raneri, S Alvarez, C Timler, S A Chatterjee, L Ditzler, G Kennedy, R Remans, I Brouwer, K B van den Berg, E F Talsma, J C J Groot. A model-based exploration of farm-household livelihood and nutrition indicators to guide nutrition-sensitive agriculture interventions. Food Security, 2020, 12(1): 59–81
https://doi.org/10.1007/s12571-019-00985-0
44 Organisation for Economic Co-operation and Development (OECD). Environmental Indicators for Agriculture, Methods and Results. OECD, 2001
45 D A Landis. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 2017, 18: 1–12
https://doi.org/10.1016/j.baae.2016.07.005
46 J A Foley, R Defries, G P Asner, C Barford, G Bonan, S R Carpenter, F S Chapin, M T Coe, G C Daily, H K Gibbs, J H Helkowski, T Holloway, E A Howard, C J Kucharik, C Monfreda, J A Patz, I C Prentice, N Ramankutty, P K Snyder. Global consequences of land use. Science, 2005, 309(5734): 570–574
https://doi.org/10.1126/science.1111772 pmid: 16040698
47 B Phalan, M Onial, A Balmford, R E Green. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science, 2011, 333(6047): 1289–1291
https://doi.org/10.1126/science.1208742 pmid: 21885781
48 J M Holland, J C Douma, L Crowley, L James, L Kor, D R W Stevenson, B M Smith. Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agronomy for Sustainable Development, 2017, 37(4): 31
https://doi.org/10.1007/s13593-017-0434-x
49 M Dainese, E A Martin, M A Aizen, M Albrecht, I Bartomeus, R Bommarco, L G Carvalheiro, R Chaplin-Kramer, V Gagic, L A Garibaldi, J Ghazoul, H Grab, M Jonsson, D S Karp, C M Kennedy, D Kleijn, C Kremen, D A Landis, D K Letourneau, L Marini, K Poveda, R Rader, H G Smith, T Tscharntke, G K S Andersson, I Badenhausser, S Baensch, A D M Bezerra, F J J A Bianchi, V Boreux, V Bretagnolle, B Caballero-Lopez, P Cavigliasso, A Ćetković, N P Chacoff, A Classen, S Cusser, F D da Silva E Silva, G A de Groot, J H Dudenhöffer, J Ekroos, T Fijen, P Franck, B M Freitas, M P D Garratt, C Gratton, J Hipólito, A Holzschuh, L Hunt, A L Iverson, S Jha, T Keasar, T N Kim, M Kishinevsky, B K Klatt, A M Klein, K M Krewenka, S Krishnan, A E Larsen, C Lavigne, H Liere, B Maas, R E Mallinger, E Martinez Pachon, A Martínez-Salinas, T D Meehan, M G E Mitchell, G A R Molina, M Nesper, L Nilsson, M E O’Rourke, M K Peters, M Plećaš, S G Potts, D L Ramos, J A Rosenheim, M Rundlöf, A Rusch, A Sáez, J Scheper, M Schleuning, J M Schmack, A R Sciligo, C Seymour, D A Stanley, R Stewart, J C Stout, L Sutter, M B Takada, H Taki, G Tamburini, M Tschumi, B F Viana, C Westphal, B K Willcox, S D Wratten, A Yoshioka, C Zaragoza-Trello, W Zhang, Y Zou, I Steffan-Dewenter. A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5(10): eaax0121
https://doi.org/10.1126/sciadv.aax0121 pmid: 31663019
50 M Tschumi, M Albrecht, M H Entling, K Jacot. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proceedings: Biological Sciences, 2015, 282(1814): 20151369
51 J Holden, R P Grayson, D Berdeni, S Bird, P J Chapman, J L Edmondson, L G Firbank, T Helgason, M E Hodson, S F P Hunt, D T Jones, M G Lappage, E Marshall-Harries, M Nelson, M Prendergast-Miller, H Shaw, R N Wade, J R Leake. The role of hedgerows in soil functioning within agricultural landscapes. Agriculture, Ecosystems & Environment, 2019, 273: 1–12
https://doi.org/10.1016/j.agee.2018.11.027
52 M Torralba, N Fagerholm, P J Burgess, G Moreno, T Plieninger. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems & Environment, 2016, 230: 150–161
https://doi.org/10.1016/j.agee.2016.06.002
53 W F Cong, E Hoffland, L Li, J Six, J H Sun, X G Bao, F S Zhang, W Van Der Werf. Intercropping enhances soil carbon and nitrogen. Global Change Biology, 2015, 21(4): 1715–1726
https://doi.org/10.1111/gcb.12738 pmid: 25216023
54 A L C Pereira, T C Taques, J O S Valim, A P Madureira, W G Campos. The management of bee communities by intercropping with flowering basil (Ocimum basilicum) enhances pollination and yield of bell pepper (Capsicum annuum). Journal of Insect Conservation, 2015, 19(3): 479–486
https://doi.org/10.1007/s10841-015-9768-3
55 R W Brooker, A E Bennett, W F Cong, T J Daniell, T S George, P D Hallett, C Hawes, P P M Iannetta, H G Jones, A J Karley, L Li, B M McKenzie, R J Pakeman, E Paterson, C Schöb, J Shen, G Squire, C A Watson, C Zhang, F Zhang, J Zhang, P J White. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206(1): 107–117
https://doi.org/10.1111/nph.13132
56 C J Li, T W Kuyper, W van der Werf, J L Zhang, H G Li, F S Zhang, E Hoffland. Testing for complementarity in phosphorus resource use by mixtures of crop species. Plant and Soil, 2019, 439(1–2): 163–177
https://doi.org/10.1007/s11104-018-3732-4
57 L Bedoussac, E Justes. Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant and Soil, 2010, 330(1–2): 37–54
https://doi.org/10.1007/s11104-010-0303-8
58 L Li, J Sun, F Zhang, T Guo, X Bao, F A Smith, S E Smith. Root distribution and interactions between intercropped species. Oecologia, 2006, 147(2): 280–290
https://doi.org/10.1007/s00442-005-0256-4 pmid: 16211394
59 R A Morris, D P Garrity. Resource capture and utilization in intercropping: non-nitrogen nutrients. Field Crops Research, 1993, 34(3–4): 319–334
https://doi.org/10.1016/0378-4290(93)90120-C
60 L Li, D Tilman, H Lambers, F S Zhang. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203(1): 63–69
https://doi.org/10.1111/nph.12778 pmid: 25013876
61 B Li, Y Y Li, H M Wu, F F Zhang, C J Li, X X Li, H Lambers, L Li. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496–6501
https://doi.org/10.1073/pnas.1523580113 pmid: 27217575
62 G Wang, P Schultz, A Tipton, J Zhang, F Zhang, J D Bever. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecology Letters, 2019, 22(8): 1221–1232
https://doi.org/10.1111/ele.13273 pmid: 31131969
63 G Z Wang, S K Bei, J P Li, X G Bao, J D Zhang, P A Schultz, H G Li, L Li, F S Zhang, J D Bever, J L Zhang. Soil microbial legacy drives crop diversity advantage: linking ecological plant–soil feedback with agricultural intercropping. Journal of Applied Ecology, 2021, 58(3): 496–506
https://doi.org/10.1111/1365-2664.13802
64 T Dias, A Dukes, P M Antunes. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. Journal of the Science of Food and Agriculture, 2015, 95(3): 447–454
https://doi.org/10.1002/jsfa.6565 pmid: 24408021
65 X G Zhou, J Liu, F Z Wu. Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil, 2017, 415(1–2): 507–520
https://doi.org/10.1007/s11104-017-3181-5
66 M K van Ittersum, R Rabbinge, H C van Latesteijn. Exploratory land use studies and their role in strategic policy making. Agricultural Systems, 1998, 58(3): 309–330
https://doi.org/10.1016/S0308-521X(98)00033-X
67 G J H M van der Burgt, G J M Oomen, A S J Habets, W A H Rossing. The NDICEA model, a tool to improve nitrogen use efficiency in cropping systems. Nutrient Cycling in Agroecosystems, 2006, 74(3): 275–294
https://doi.org/10.1007/s10705-006-9004-3
68 S Dogliotti, W A H Rossing, M K van Ittersum. ROTAT, a tool for systematically generating crop rotations. European Journal of Agronomy, 2003, 19(2): 239–250
https://doi.org/10.1016/S1161-0301(02)00047-3
69 J C J Groot, W A H Rossing, A Jellema, D J Stobbelaar, H Renting, M K Van Ittersum. Exploring multi-scale trade-offs between nature conservation, agricultural profits and landscape quality—A methodology to support discussions on land-use perspectives. Agriculture, Ecosystems & Environment, 2007, 120(1): 58–69
https://doi.org/10.1016/j.agee.2006.03.037
70 L Li, J H Sun, F S Zhang, X L Li, S C Yang, Z Rengel. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and inter-specific interactions on nutrients. Field Crops Research, 2001, 71(2): 123–137
https://doi.org/10.1016/S0378-4290(01)00156-3
71 L Li, S M Li, J H Sun, L L Zhou, X G Bao, H G Zhang, F S Zhang. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192–11196
https://doi.org/10.1073/pnas.0704591104 pmid: 17592130
72 J X Xiao, X H Yin, J B Ren, M Y Zhang, L Tang, Y Zheng. Complementation drives higher growth rate and yield of wheat and saves nitrogen fertilizer in wheat and faba bean intercropping. Field Crops Research, 2018, 221: 119–129
https://doi.org/10.1016/j.fcr.2017.12.009
73 F Yang, D P Liao, X L Wu, R C Gao, Y F Fan, M A Raza, X C Wang, T W Yong, W G Liu, J Liu, J B Du, K Shu, W Y Yang. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017, 203: 16–23
https://doi.org/10.1016/j.fcr.2016.12.007
74 H X Gao, W W Meng, C C Zhang, W van der Werf, Z Zhang, S B Wan, F S Zhang. Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input. Food and Energy Security, 2020, 9(1): e187
https://doi.org/10.1002/fes3.187
75 S J Gao, J S Gao, W D Cao, C Q Zou, J Huang, J S Bai, F G Dou. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil. Journal of Integrative Agriculture, 2018, 17(8): 1852–1860
https://doi.org/10.1016/S2095-3119(17)61901-4
76 Q G Yu, X Hu, J W Ma, J Ye, W C Sun, Q Wang, H Lin. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil & Tillage Research, 2020, 196: 104483
https://doi.org/10.1016/j.still.2019.104483
[1] Hao YANG, Weiping ZHANG, Long LI. INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 373-386.
[2] Maryna STROKAL, Annette B.G. JANSSEN, Xinping CHEN, Carolien KROEZE, Fan LI, Lin MA, Huirong YU, Fusuo ZHANG, Mengru WANG. GREEN AGRICULTURE AND BLUE WATER IN CHINA: REINTEGRATING CROP AND LIVESTOCK PRODUCTION FOR CLEAN WATER[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 72-80.
[3] Xiaoqiang JIAO, Derara Sori FEYISA, Jasper KANOMANYANGA, Ngula David MUTTENDANGO, Shingirai MUDARE, Amadou NDIAYE, Bilisuma KABETO, Felix Dapare DAKORA, Fusuo ZHANG. Science and Technology Backyard model: implications for sustainable agriculture in Africa[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 390-400.
[4] Yuelai LU, David NORSE, David POWLSON. Agriculture Green Development in China and the UK: common objectives and converging policy pathways[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 98-105.
[5] Leslie G. FIRBANK. Towards the sustainable intensification of agriculture—a systems approach to policy formulation[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 81-89.
[6] Jianbo SHEN, Qichao ZHU, Xiaoqiang JIAO, Hao YING, Hongliang WANG, Xin WEN, Wen XU, Tingyu LI, Wenfeng CONG, Xuejun LIU, Yong HOU, Zhenling CUI, Oene OENEMA, William J. DAVIES, Fusuo ZHANG. Agriculture Green Development: a model for China and the world[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 5-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed