Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2021, Vol. 8 Issue (3) : 373-386    https://doi.org/10.15302/J-FASE-2021398
REVIEW
INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS
Hao YANG, Weiping ZHANG, Long LI()
Beijing Key Laboratory of Biodiversity and Organic Farming, Key Laboratory of Plant and Soil Interactions, Ministry of Education; College of Resource and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China.
 Download: PDF(1271 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Intercropping is a useful practice when agricultural sustainability is emphasized.

• We integrate biodiversity-ecosystem functioning and intercropping.

• Intercropping optimizes ecosystem services such as stabilizing yield and reducing use of chemicals.

• Intercropping benefits are attributed partly to complementarity and selection effects.

• Application of ecological principles is key to sustainable agricultural development.

Intercropping is a traditional farming system that increases crop diversity to strengthen agroecosystem functions while decreasing chemical inputs and minimizing negative environmental effects of crop production. Intercropping is currently considerable interest because of its importance in sustainable agriculture. Here, we synthesize the factors that make intercropping a sustainable means of food production by integrating biodiversity of natural ecosystems and crop diversity. In addition to well-known yield increases, intercropping can also increase yield stability over the long term and increase systemic resistance to plant diseases, pests and other unfavorable factors (e.g. nutrient deficiencies). The efficient use of resources can save mineral fertilizer inputs, reduce environmental pollution risks and greenhouse gas emissions caused by agriculture, thus mitigating global climate change. Intercropping potentially increases above- and below-ground biodiversity of various taxa at field scale, consequently it enhances ecosystem services. Complementarity and selection effects allow a better understanding the mechanisms behind enhanced ecosystem functioning. The development of mechanization is essential for large-scale application of intercropping. Agroecosystem multifunctionality and soil health should be priority topics in future research on intercropping.

Keywords agroecosystems      crop diversity      intercropping      interspecific interactions      sustainable agriculture     
Corresponding Author(s): Long LI   
Just Accepted Date: 12 May 2021   Online First Date: 08 June 2021    Issue Date: 26 September 2021
 Cite this article:   
Hao YANG,Weiping ZHANG,Long LI. INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 373-386.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021398
https://academic.hep.com.cn/fase/EN/Y2021/V8/I3/373
Continent Country/Region Intercropping system LER Reference
Africa Ethiopia Wheat (Triticum aestivum)-faba bean (Vicia faba) 1.03–1.17 [12]
Malawi Maize (Zea mays)-pigeon pea (Cajanus cajan) [13]
Nigeria Rice (Oryza sativa)-cowpea 1.13–1.85 [14]
Asia China Maize-pea 1.18–1.47 [15]
Wheat-maize 1.14–1.33 [16]
Maize-soybean (Glycine max) 1.91–2.13 [17]
Maize-faba bean 0.94–1.47 [18]
India Maize-soybean 1.1–1.6 [19]
Rice-peanut (Arachis hypogaea) 1.66 [20]
Iran Sunflower (Helianthus annus)-soybean 0.82–1.28 [21]
Europe England Maize-faba bean 1.02–1.23 [22]
France Wheat-clover (Trifolium) [23]
Italy Ryegrass (Lolium perenne)-clover 1.1–1.2 [24]
North America Canada Pea-barley (Hordeum vulgare) 1.13–1.31 [25]
Pea-oat (Avena sativa) 1.13–1.29 [25]
United States Winter wheat-clover [26]
Oceania Australia Wheat-chickpea (Cicer arietinum) 0.97–1.10 [27]
South America Brazil Cowpea (Vigna unguiculata)-beet (Beta vulgaris) 1.05–1.11 [28]
Tab.1  Distribution and land equivalent ratio (LER) of the main intercropping systems of selected countries
Fig.1  Crop diversity and the coexistence of multiple species have been used as an example of improved agroecosystem functions. Compared to monocultures, intercropping increased the productivity and yield stability, reduced agrochemical inputs and thus the environmental costs (greenhouse gas emissions, water and soil pollution), and increasing insect diversity improved crop pollination and reduced plant diseases. Intercropping increases soil fertility in terms of chemical, biological and physical properties.
Fig.2  The mechanisms of complementarity effects and selection effects driving overyielding in intercropping.
Fig.3  Interspecific facilitation and niche differentiation increase resource use efficiency. (a) Differences in plant height and light requirement increase light interception and use efficiency. (b) Biological nitrogen fixation (BNF) of legumes reduces the nitrogen fertilizer input. (c) Root exudates of legumes increase the uptake of insoluble nutrients. (d) Root exudates from maize enhance faba bean nodulation and increase dinitrogen fixation. (e) Nitrogen transfer through root exudation, root decomposition and mycorrhizal fungal networks. (f) Differences in root distribution result in spatial complementarity.
Fig.4  Intercropping provides an alternative way to ensure food security and develop sustainable agriculture.
1 D Tilman, K G Cassman, P A Matson, R Naylor, S Polasky. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671–677
https://doi.org/10.1038/nature01014 pmid: 12167873
2 E Malézieux, Y Crozat, C Dupraz, M Laurans, D Makowski, H Ozier-Lafontaine, B Rapidel, S de Tourdonnet, M Valantin-Morison. Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 2009, 29(1): 43–62
https://doi.org/10.1051/agro:2007057
3 X Chen, Z Cui, M Fan, P Vitousek, M Zhao, W Ma, Z Wang, W Zhang, X Yan, J Yang, X Deng, Q Gao, Q Zhang, S Guo, J Ren, S Li, Y Ye, Z Wang, J Huang, Q Tang, Y Sun, X Peng, J Zhang, M He, Y Zhu, J Xue, G Wang, L Wu, N An, L Wu, L Ma, W Zhang, F Zhang. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486–489
https://doi.org/10.1038/nature13609 pmid: 25186728
4 J H Guo, X J Liu, Y Zhang, J L Shen, W X Han, W F Zhang, P Christie, K W T Goulding, P M Vitousek, F S Zhang. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008–1010
https://doi.org/10.1126/science.1182570 pmid: 20150447
5 E A Davidson. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2009, 2(9): 659–662
https://doi.org/10.1038/ngeo608
6 D Kleijn, F Kohler, A Báldi, P Batáry, E D Concepción, Y Clough, M Díaz, D Gabriel, A Holzschuh, E Knop, A Kovács, E J P Marshall, T Tscharntke, J Verhulst. On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings. Biological Sciences, 2009, 276(1658): 903–909
https://doi.org/10.1098/rspb.2008.1509 pmid: 19019785
7 K S Zimmerer. The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 2769–2774
https://doi.org/10.1073/pnas.1216294110 pmid: 23382215
8 M Loreau, S Naeem, P Inchausti, J Bengtsson, J P Grime, A Hector, D U Hooper, M A Huston, D Raffaelli, B Schmid, D Tilman, D A Wardle. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 2001, 294(5543): 804–808
https://doi.org/10.1126/science.1064088 pmid: 11679658
9 H M He, L N Liu, S Munir, N H Bashir, Y Wang, J Yang, C Y Li. Crop diversity and pest management in susctainable agriculture. Journal of Integrative Agriculture, 2019, 18(9): 1945–1952
https://doi.org/10.1016/S2095-3119(19)62689-4
10 L Li, L Z Zhang, F S Zhang. Crop Mixtures and the Mechanisms of Overyielding. Encyclopedia of Biodiversity, second edition. Academic Press (Elsevier), 2013, 2: 382–395
11 C Li, E Hoffland, T W Kuyper, Y Yu, C Zhang, H Li, F Zhang, W van der Werf. Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6(6): 653–660
https://doi.org/10.1038/s41477-020-0680-9 pmid: 32483328
12 G Agegnehu, A Ghizaw, W Sinebo. Yield potential and land-use efficiency of wheat and faba bean mixed intercropping. Agronomy for Sustainable Development, 2008, 28(2): 257–263
https://doi.org/10.1051/agro:2008012
13 S S Snapp, M J Blackie, R A Gilbert, R Bezner-Kerr, G Y Kanyama-Phiri. Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(48): 20840–20845
https://doi.org/10.1073/pnas.1007199107 pmid: 21098285
14 F O Oroka, A U Omoregie. Competition in a rice-cowpea intercrop as affected by nitrogen fertilizer and plant population. Scientia Agrícola, 2007, 64(6): 621–629
https://doi.org/10.1590/S0103-90162007000600010
15 L L Mao, L Z Zhang, W Q Li, W van der Werf, J H Sun, H Spiertz, L Li. Yield advantage and water saving in maize/pea intercrop. Field Crops Research, 2012, 138: 11–20
https://doi.org/10.1016/j.fcr.2012.09.019
16 Y X Liu, W P Zhang, J H Sun, X F Li, P Christie, L Li. High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Plant and Soil, 2015, 397(1–2): 387–399
https://doi.org/10.1007/s11104-015-2654-7
17 P Chen, C Song, X M Liu, L Zhou, H Yang, X Zhang, Y Zhou, Q Du, T Pang, Z D Fu, X C Wang, W G Liu, F Yang, K Shu, J Du, J Liu, W Yang, T Yong. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system. Science of the Total Environment, 2019, 657: 987–999
https://doi.org/10.1016/j.scitotenv.2018.11.376 pmid: 30677964
18 H Y Xia, Z G Wang, J H Zhao, J H Sun, X G Bao, P Christie, F S Zhang, L Li. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Research, 2013, 154: 53–64
https://doi.org/10.1016/j.fcr.2013.07.011
19 P Banik, R C Sharma. Yield and resource utilization efficiency in baby cornlegume-intercropping system in the Eastern Plateau of India. Journal of Sustainable Agriculture, 2009, 33(4): 379–395
https://doi.org/10.1080/10440040902834970
20 R Sarkar, G Malik, P Pal. Effect of intercropping lentil (Lens culinaris) and linseed (Linum usitatissimum) under varying plant density and row arrangement on productivity and advantages in system under rainfed upland. Indian Journal of Agronomy, 2004, 49: 241–243
21 J Hamzei, M Seyyedi. Energy use and input-output costs for sunflower production in sole and intercropping with soybean under different tillage systems. Soil & Tillage Research, 2016, 157: 73–82
https://doi.org/10.1016/j.still.2015.11.008
22 S Barker, M D Dennett. Effect of density, cultivar and irrigation on spring sown monocrops and intercrops of wheat (Triticum aestivum L.) and faba beans (Vicia faba L.). European Journal of Agronomy, 2013, 51: 108–116
https://doi.org/10.1016/j.eja.2013.08.001
23 C Amossé, M H Jeuffroy, C David. Relay intercropping of legume cover crops in organic winter wheat: effects on performance and resource availability. Field Crops Research, 2013, 145: 78–87
https://doi.org/10.1016/j.fcr.2013.02.010
24 D Giambalvo, P Ruisi, G Di Miceli, A S Frenda, G Amato. Forage production, N uptake, N2 fixation, and N recovery of berseem clover grown in pure stand and in mixture with annual ryegrass under different managements. Plant and Soil, 2011, 342(1–2): 379–391
https://doi.org/10.1007/s11104-010-0703-9
25 A B Kwabiah. Biological efficiency and economic benefits of pea-barley and pea-oat intercrops. Journal of Sustainable Agriculture, 2005, 25(1): 117–128
https://doi.org/10.1300/J064v25n01_09
26 B C Blaser, J W Singer, L R Gibson. Winter cereal canopy effect on cereal and interseeded legume productivity. Agronomy Journal, 2011, 103(4): 1180–1185
https://doi.org/10.2134/agronj2010.0506
27 M R Jahansooz, I A M Yunusa, D R Coventry, A R Palmer, D Eamus. Radiation- and water-use associated with growth and yields of wheat and chickpea in sole and mixed crops. European Journal of Agronomy, 2007, 26(3): 275–282
https://doi.org/10.1016/j.eja.2006.10.008
28 A P Chaves, F Bezerra Neto, J S S Lima, J N Silva, R L C Nunes, A P Barros Júnior, G K L Lima, E C Santos. Cowpea and beet intercropping agro-economic dynamics under spatial arrangement and cowpea population density. Horticultura Brasileira, 2020, 38(2): 192–203
https://doi.org/10.1590/s0102-053620200212
29 R W Brooker, A E Bennett, W F Cong, T J Daniell, T S George, P D Hallett, C Hawes, P P M Iannetta, H G Jones, A J Karley, L Li, B M McKenzie, R J Pakeman, E Paterson, C Schöb, J Shen, G Squire, C A Watson, C Zhang, F Zhang, J Zhang, P J White. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206(1): 107–117
https://doi.org/10.1111/nph.13132
30 J Himmelstein, A Ares, D Gallagher, J Myers. A meta-analysis of intercropping in Africa: impacts on crop yield, farmer income, and integrated pest management effects. International Journal of Agricultural Sustainability, 2017, 15(1): 1–10
https://doi.org/10.1080/14735903.2016.1242332
31 L Li. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403–415 (in Chinese)
32 Y Hong, N Heerink, S Q Jin, P Berentsen, L Z Zhang, W van der Werf. Intercropping and agroforestry in China—current state and trends. Agriculture, Ecosystems & Environment, 2017, 244: 52–61
https://doi.org/10.1016/j.agee.2017.04.019
33 A Alignier, X O Solé-Senan, I Robleño, B Baraibar, L Fahrig, D Giralt, N Gross, J L Martin, J Recasens, C Sirami, G Siriwardena, A Bosem Baillod, C Bertrand, R Carrié, A Hass, L Henckel, P Miguet, I Badenhausser, J Baudry, G Bota, V Bretagnolle, L Brotons, F Burel, F Calatayud, Y Clough, R Georges, A Gibon, J Girard, K Lindsay, J Minano, S Mitchell, N Patry, B Poulin, T Tscharntke, A Vialatte, C Violle, N Yaverscovski, P Batáry. Configurational crop heterogeneity increases within-field plant diversity. Journal of Applied Ecology, 2020, 57(4): 654–663
https://doi.org/10.1111/1365-2664.13585
34 T Tscharntke, A M Klein, A Kruess, I Steffan-Dewenter, C Thies. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology Letters, 2005, 8(8): 857–874
https://doi.org/10.1111/j.1461-0248.2005.00782.x
35 H Hauggaard-Nielsen, E S Jensen. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Research, 2001, 72(3): 185–196
https://doi.org/10.1016/S0378-4290(01)00176-9
36 Y Yu, T J Stomph, D Makowski, L Z Zhang, W van der Werf. A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management. Field Crops Research, 2016, 198: 269–279
https://doi.org/10.1016/j.fcr.2016.08.001
37 M O Martin-Guay, A Paquette, J Dupras, D Rivest. The new Green Revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment, 2018, 615: 767–772
https://doi.org/10.1016/j.scitotenv.2017.10.024 pmid: 28992501
38 G Agegnehu, A Ghizaw, W Sinebo. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. European Journal of Agronomy, 2006, 25(3): 202–207
https://doi.org/10.1016/j.eja.2006.05.002
39 E K Nassary, F Baijukya, P A Ndakidemi. Productivity of intercropping with maize and common bean over five cropping seasons on smallholder farms of Tanzania. European Journal of Agronomy, 2020, 113: 125964
https://doi.org/10.1016/j.eja.2019.125964
40 Z R Khan, C A O Midega, A Hassanali, J A Pickett, L J Wadhams, A Wanjoya. Management of witchweed, Striga hermonthica, and stemborers in sorghum, Sorghum bicolor, through intercropping with greenleaf desmodium, Desmodium intortum. International Journal of Pest Management, 2006, 52(4): 297–302
https://doi.org/10.1080/09670870600816991
41 P K Ghosh, M Mohanty, K K Bandyopadhyay, D K Painuli, A K Misra. Growth, competition, yield advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India. Field Crops Research, 2006, 96(1): 80–89
https://doi.org/10.1016/j.fcr.2005.05.009
42 D Tilman, F Isbell, J M Cowles. Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 2014, 45(1): 471–493
https://doi.org/10.1146/annurev-ecolsys-120213-091917
43 J Xie, L Hu, J Tang, X Wu, N Li, Y Yuan, H Yang, J Zhang, S Luo, X Chen. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): E1381–E1387
https://doi.org/10.1073/pnas.1111043108 pmid: 22084110
44 M R Rao, R W Willey. Evaluation of yield stability in intercropping-studies on sorghum-pigeonpea. Experimental Agriculture, 1980, 16(2): 105–116
https://doi.org/10.1017/S0014479700010796
45 M Raseduzzaman, E S Jensen. Does intercropping enhance yield stability in arable crop production? A meta-analysis. European Journal of Agronomy, 2017, 91: 25–33
https://doi.org/10.1016/j.eja.2017.09.009
46 D Han, M J Currell, G Cao. Deep challenges for China’s war on water pollution. Environmental Pollution, 2016, 218: 1222–1233
https://doi.org/10.1016/j.envpol.2016.08.078 pmid: 27613318
47 Y Ding, X Huang, Y Li, H Y Liu, Q C Zhang, X M Liu, J M Xu, H J Di. Nitrate leaching losses mitigated with intercropping of deep-rooted and shallow-rooted plants. Journal of Soils and Sediments, 2021, 21(1): 364–375
https://doi.org/10.1007/s11368-020-02733-w
48 Z Xu, C J Li, C C Zhang, Y Yu, W van der Werf, F S Zhang. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Research, 2020, 246: 107661
https://doi.org/10.1016/j.fcr.2019.107661
49 J Lehmann, D A Bossio, I Kögel-Knabner, M C Rillig. The concept and future prospects of soil health. Nature Reviews Earth & Environment, 2020, 1(10): 544–553
https://doi.org/10.1038/s43017-020-0080-8 pmid: 33015639
50 W Ma, L Ma, J Li, F Wang, I Sisák, F Zhang. Phosphorus flows and use efficiencies in production and consumption of wheat, rice, and maize in China. Chemosphere, 2011, 84(6): 814–821
https://doi.org/10.1016/j.chemosphere.2011.04.055 pmid: 21570104
51 P P Mei, L G Gui, P Wang, J C Huang, H Y Long, P Christie, L Li. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crops Research, 2012, 130: 19–27
https://doi.org/10.1016/j.fcr.2012.02.007
52 J F Tooker, S D Frank. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology, 2012, 49(5): 974–985
https://doi.org/10.1111/j.1365-2664.2012.02173.x
53 D K Letourneau, I Armbrecht, B S Rivera, J M Lerma, E J Carmona, M C Daza, S Escobar, V Galindo, C Gutiérrez, S D López, J L Mejía, A M A Rangel, J H Rangel, L Rivera, C A Saavedra, A M Torres, A R Trujillo. Does plant diversity benefit agroecosystems? A synthetic review. Ecological Applications, 2011, 21(1): 9–21
https://doi.org/10.1890/09-2026.1 pmid: 21516884
54 G Hailu, S Niassy, K R Zeyaur, N Ochatum, S Subramanian. Maize-legume intercropping and push-pull for management of fall armyworm, stemborers, and striga in Uganda. Agronomy Journal, 2018, 110(6): 2513–2522
https://doi.org/10.2134/agronj2018.02.0110
55 Y Zhu, H Chen, J Fan, Y Wang, Y Li, J Chen, J Fan, S Yang, L Hu, H Leung, T W Mew, P S Teng, Z Wang, C C Mundt. Genetic diversity and disease control in rice. Nature, 2000, 406(6797): 718–722
https://doi.org/10.1038/35021046 pmid: 10963595
56 Y Q Zheng, L M Zhang, B Chen, N S Yan, F R Gui, Q A Zan, G Z Du, S He, Z Y Li, Y L Gao, G L Xiao. Potato/Maize intercropping reduces infestation of potato tuber moth, Phthorimaea operculella (Zeller) by the enhancement of natural enemies. Journal of Integrative Agriculture, 2020, 19(2): 394–405
https://doi.org/10.1016/S2095-3119(19)62699-7
57 C Li, X He, S Zhu, H Zhou, Y Wang, Y Li, J Yang, J Fan, J Yang, G Wang, Y Long, J Xu, Y Tang, G Zhao, J Yang, L Liu, Y Sun, Y Xie, H Wang, Y Zhu. Crop diversity for yield increase. PLoS One, 2009, 4(11): e8049
https://doi.org/10.1371/journal.pone.0008049 pmid: 19956624
58 R Lal. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623–1627
https://doi.org/10.1126/science.1097396 pmid: 15192216
59 Y Yang, D Tilman, C Lehman, J J Trost. Sustainable intensification of high-diversity biomass production for optimal biofuel benefits. Nature Sustainability, 2018, 1(11): 686–692
https://doi.org/10.1038/s41893-018-0166-1
60 Z G Wang, X Jin, X G Bao, X F Li, J H Zhao, J H Sun, P Christie, L Li. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLoS One, 2014, 9(12): e113984
https://doi.org/10.1371/journal.pone.0113984 pmid: 25486249
61 Z G Wang, X G Bao, X F Li, X Jin, J H Zhao, J H Sun, P Christie, L Li. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant and Soil, 2015, 391(1–2): 265–282
https://doi.org/10.1007/s11104-015-2428-2
62 W F Cong, E Hoffland, L Li, J Six, J H Sun, X G Bao, F S Zhang, W Van Der Werf. Intercropping enhances soil carbon and nitrogen. Global Change Biology, 2015, 21(4): 1715–1726
https://doi.org/10.1111/gcb.12738 pmid: 25216023
63 F L Hu, Q Chai, A Z Yu, W Yin, H Y Cui, Y T Gan. Less carbon emissions of wheat-maize intercropping under reduced tillage in arid areas. Agronomy for Sustainable Development, 2015, 35(2): 701–711
https://doi.org/10.1007/s13593-014-0257-y
64 D Samarappuli, M T Berti. Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production. Journal of Cleaner Production, 2018, 194: 515–524
https://doi.org/10.1016/j.jclepro.2018.05.083
65 J K Adesodun, M O Atayese, T A Agbaje, B A Osadiaye, O F Mafe, A A Soretire. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metalsin soils contaminated with zinc and lead nitrates. Water, Air, and Soil Pollution, 2010, 207(1–4): 195–201
https://doi.org/10.1007/s11270-009-0128-3
66 L Tang, Y Hamid, A Zehra, Z A Sahito, Z L He, W T Beri, M B Khan, X E Yang. Fava bean intercropping with Sedum alfredii inoculated with endophytes enhances phytoremediation of cadmium and lead co-contaminated field. Environmental Pollution, 2020, 265(Part A): 114861
67 R Rader, I Bartomeus, L A Garibaldi, M P D Garratt, B G Howlett, R Winfree, S A Cunningham, M M Mayfield, A D Arthur, G K S Andersson, R Bommarco, C Brittain, L G Carvalheiro, N P Chacoff, M H Entling, B Foully, B M Freitas, B Gemmill-Herren, J Ghazoul, S R Griffin, C L Gross, L Herbertsson, F Herzog, J Hipólito, S Jaggar, F Jauker, A M Klein, D Kleijn, S Krishnan, C Q Lemos, S A M Lindström, Y Mandelik, V M Monteiro, W Nelson, L Nilsson, D E Pattemore, N de O. Pereira, G Pisanty, S G Potts, M Reemer, M Rundlöf, C S Sheffield, J Scheper, C Schüepp, H G Smith, D A Stanley, J C Stout, H Szentgyörgyi, H Taki, C H Vergara, B F Viana, M Woyciechowski. Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(1): 146–151
https://doi.org/10.1073/pnas.1517092112 pmid: 26621730
68 F Isbell, P R Adler, N Eisenhauer, D Fornara, K Kimmel, C Kremen, D K Letourneau, M Liebman, H W Polley, S Quijas, M Scherer-Lorenzen. Benefits of increasing plant diversity in sustainable agroecosystems. Journal of Ecology, 2017, 105(4): 871–879
https://doi.org/10.1111/1365-2745.12789
69 K A Orford, P J Murray, I P Vaughan, J Memmott. Modest enhancements to conventional grassland diversity improve the provision of pollination services. Journal of Applied Ecology, 2016, 53(3): 906–915
https://doi.org/10.1111/1365-2664.12608 pmid: 27609988
70 N Korboulewsky, G Perez, M Chauvat. How tree diversity affects soil fauna diversity: a review. Soil Biology & Biochemistry, 2016, 94: 94–106
https://doi.org/10.1016/j.soilbio.2015.11.024
71 D U Hooper, D Bignell, V K Brown, L Brussard, J Mark Dangerfield, D H Wall, D A Wardle, D C Coleman, K Giller, P Lavelle, W H Van Der Putten, P C De Ruiter, J Rusek, W L Silver, J M Tiedje, V Wolters. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience, 2000, 50(12): 1049–1061
https://doi.org/10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
72 O Schmidt, R O Clements, G Donaldson. Why do cereal-legume intercrops support large earthworm populations? Applied Soil Ecology, 2003, 22(2): 181–190
https://doi.org/10.1016/S0929-1393(02)00131-2
73 X L Tian, C B Wang, X G Bao, P Wang, X F Li, S C Yang, G C Ding, P Christie, L Li. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 2019, 436(1–2): 173–192
https://doi.org/10.1007/s11104-018-03924-8
74 J Fargione, D Tilman, R Dybzinski, J H Lambers, C Clark, W S Harpole, J M H Knops, P B Reich, M Loreau. From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1611): 871–876
https://doi.org/10.1098/rspb.2006.0351 pmid: 17251113
75 B Li, Y Y Li, H M Wu, F F Zhang, C J Li, X X Li, H Lambers, L Li. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496–6501
https://doi.org/10.1073/pnas.1523580113 pmid: 27217575
76 F Isbell, J Cowles, L E Dee, M Loreau, P B Reich, A Gonzalez, A Hector, B Schmid. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecology Letters, 2018, 21(6): 763–778
https://doi.org/10.1111/ele.12928 pmid: 29493062
77 P A Niklaus, M Baruffol, J S He, K Ma, B Schmid. Can niche plasticity promote biodiversity-productivity relationships through increased complementarity? Ecology, 2017, 98(4): 1104–1116
https://doi.org/10.1002/ecy.1748 pmid: 28129429
78 M Guderle, D Bachmann, A Milcu, A Gockele, M Bechmann, C Fischer, C Roscher, D Landais, O Ravel, S Devidal, J Roy, A Gessler, N Buchmann, A Weigelt, A Hildebrandt. Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Functional Ecology, 2018, 32(1): 214–227
https://doi.org/10.1111/1365-2435.12948
79 K E Barry, L Mommer, J van Ruijven, C Wirth, A J Wright, Y Bai, J Connolly, G B De Deyn, H de Kroon, F Isbell, A Milcu, C Roscher, M Scherer-Lorenzen, B Schmid, A Weigelt. The future of complementarity: disentangling causes from consequences. Trends in Ecology & Evolution, 2019, 34(2): 167–180
https://doi.org/10.1016/j.tree.2018.10.013 pmid: 30527960
80 R P Yu, X X Li, Z H Xiao, H Lambers, L Li. Phosphorus facilitation and covariation of root traits in steppe species. New Phytologist, 2020, 226(5): 1285–1298
https://doi.org/10.1111/nph.16499 pmid: 32083760
81 J A Navarro-Cano, B Horner, M Goberna, M Verdú. Additive effects of nurse and facilitated plants on ecosystem functions. Journal of Ecology, 2019, 107(6): 2587–2597
https://doi.org/10.1111/1365-2745.13224
82 L Li, D Tilman, H Lambers, F S Zhang. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203(1): 63–69
https://doi.org/10.1111/nph.12778 pmid: 25013876
83 I Prieto, C Armas, F I Pugnaire. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytologist, 2012, 193(4): 830–841
https://doi.org/10.1111/j.1469-8137.2011.04039.x pmid: 22250761
84 Z L Fan, Q Chai, G B Huang, A Z Yu, P Huang, C H Yang, Z Q Tao, H L Liu. Yield and water consumption characteristics of wheat/maize intercropping with reduced tillage in an Oasis region. European Journal of Agronomy, 2013, 45: 52–58
https://doi.org/10.1016/j.eja.2012.10.010
85 S F Ledgard, K W Steele. Biological nitrogen-fixation in mixed legume grass pastures. Plant and Soil, 1992, 141(1–2): 137–153
https://doi.org/10.1007/BF00011314
86 N Sekiya, H Araki, K Yano. Applying hydraulic lift in an agroecosystem: forage plants with shoots removed supply water to neighboring vegetable crops. Plant and Soil, 2011, 341(1–2): 39–50
https://doi.org/10.1007/s11104-010-0581-1
87 H Zang, X Yang, X Feng, X Qian, Y Hu, C Ren, Z Zeng. Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.). PLoS One, 2015, 10(3): e0121132
https://doi.org/10.1371/journal.pone.0121132 pmid: 25821975
88 L Li, S M Li, J H Sun, L L Zhou, X G Bao, H G Zhang, F S Zhang. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192–11196
https://doi.org/10.1073/pnas.0704591104 pmid: 17592130
89 Y Xue, H Xia, P Christie, Z Zhang, L Li, C Tang. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Annals of Botany, 2016, 117(3): 363–377
https://doi.org/10.1093/aob/mcv182 pmid: 26749590
90 D Zhang, C Zhang, X Tang, H Li, F Zhang, Z Rengel, W R Whalley, W J Davies, J Shen. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytologist, 2016, 209(2): 823–831
https://doi.org/10.1111/nph.13613 pmid: 26313736
91 Y M Zuo, F S Zhang, X L Li, Y P Cao. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant and Soil, 2000, 220(1/2): 13–25
https://doi.org/10.1023/A:1004724219988
92 H Xiong, Y Kakei, T Kobayashi, X Guo, M Nakazono, H Takahashi, H Nakanishi, H Shen, F Zhang, N K Nishizawa, Y Zuo. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Plant, Cell & Environment, 2013, 36(10): 1888–1902
https://doi.org/10.1111/pce.12097 pmid: 23496756
93 Y M Zuo, F S Zhang. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agronomy for Sustainable Development, 2009, 29(1): 63–71
https://doi.org/10.1051/agro:2008055
94 Y Yu, T J Stomph, D Makowski, W van der Werf. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis. Field Crops Research, 2015, 184: 133–144
https://doi.org/10.1016/j.fcr.2015.09.010
95 C J Li, E Hoffland, T W Kuyper, Y Yu, H G Li, C C Zhang, F S Zhang, W van der Werf. Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 2020, 113: 125987
https://doi.org/10.1016/j.eja.2019.125987
96 W P Zhang, G C Liu, J H Sun, D Fornara, L Z Zhang, F F Zhang, L Li. Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Functional Ecology, 2017, 31(2): 469–479
https://doi.org/10.1111/1365-2435.12732
97 N Dong, M M Tang, W P Zhang, X G Bao, Y Wang, P Christie, L Li. Temporal differentiation of crop growth as one of the drivers of intercropping yield advantage. Scientific Reports, 2018, 8(1): 3110
https://doi.org/10.1038/s41598-018-21414-w pmid: 29449595
98 S Ahmed, M A Raza, X Q Yuan, Y L Du, N Iqbal, Q Chachar, A A Soomro, F Ibrahim, S Hussain, X C Wang, W G Liu, W Y Yang. Optimized planting time and co-growth duration reduce the yield difference between intercropped and sole soybean by enhancing soybean resilience toward size-asymmetric competition. Food and Energy Security, 2020, 9(3): e226
https://doi.org/10.1002/fes3.226
99 L Z Zhang, W Van der Werf, L Bastiaans, S Zhang, B Li, J H J Spiertz. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research, 2008, 107(1): 29–42
https://doi.org/10.1016/j.fcr.2007.12.014
100 Y Gao, A W Duan, X Q Qiu, J S Sun, J P Zhang, H Liu, H Z Wang. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agronomy Journal, 2010, 102(4): 1149–1157
https://doi.org/10.2134/agronj2009.0409
101 L Mommer, J Van Ruijven, H De Caluwe, A E Smit-Tiekstra, C A M Wagemaker, N Joop Ouborg, G M Bögemann, G M Van Der Weerden, F Berendse, H De Kroon. Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. Journal of Ecology, 2010, 98(5): 1117–1127
https://doi.org/10.1111/j.1365-2745.2010.01702.x
102 L Li, J Sun, F Zhang, T Guo, X Bao, F A Smith, S E Smith. Root distribution and interactions between intercropped species. Oecologia, 2006, 147(2): 280–290
https://doi.org/10.1007/s00442-005-0256-4 pmid: 16211394
103 P Manning, F van der Plas, S Soliveres, E Allan, F T Maestre, G Mace, M J Whittingham, M Fischer. Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2018, 2(3): 427–436
https://doi.org/10.1038/s41559-017-0461-7 pmid: 29453352
[1] Wopke VAN DER WERF, Lizhen ZHANG, Chunjie LI, Ping CHEN, Chen FENG, Zhan XU, Chaochun ZHANG, Chunfeng GU, Lammert BASTIAANS, David MAKOWSKI, TjeerdJan STOMPH. COMPARING PERFORMANCE OF CROP SPECIES MIXTURES AND PURE STANDS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 481-489.
[2] Eric JUSTES, Laurent BEDOUSSAC, Christos DORDAS, Ela FRAK, Gaetan LOUARN, Simon BOUDSOCQ, Etienne-Pascal JOURNET, Anastasios LITHOURGIDIS, Chrysanthi PANKOU, Chaochun ZHANG, Georg CARLSSON, Erik Steen JENSEN, Christine WATSON, Long LI. THE 4C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 387-399.
[3] Antoine MESSÉAN, Loïc VIGUIER, Lise PARESYS, Jean-Noël AUBERTOT, Stefano CANALI, Pietro IANNETTA, Eric JUSTES, Alison KARLEY, Beatrix KEILLOR, Laura KEMPER, Frédéric MUEL, Barbara PANCINO, Didier STILMANT, Christine WATSON, Helga WILLER, Raúl ZORNOZA. ENABLING CROP DIVERSIFICATION TO SUPPORT TRANSITIONS TOWARD MORE SUSTAINABLE EUROPEAN AGRIFOOD SYSTEMS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 474-480.
[4] Henrik HAUGGAARD-NIELSEN, Søren LUND, Ane K. AARE, Christine A. WATSON, Laurent BEDOUSSAC, Jean-Noël AUBERTOT, Iman R. CHONGTHAM, Natalia BELLOSTAS, Cairistiona F. E. TOPP, Pierre HOHMANN, Erik S. JENSEN, Maureen STADEL, Bertrand PINEL, Eric JUSTES. TRANSLATING THE MULTI-ACTOR APPROACH TO RESEARCH INTO PRACTICE USING A WORKSHOP APPROACH FOCUSING ON SPECIES MIXTURES[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 460-473.
[5] Qi WANG, Zhanxiang SUN, Wei BAI, Dongsheng ZHANG, Yue ZHANG, Ruonan WANG, Wopke VAN DER WERF, Jochem B. EVERS, Tjeerd-Jan STOMPH, Jianping GUO, Lizhen ZHANG. LIGHT INTERCEPTION AND USE EFFICIENCY DIFFER WITH MAIZE PLANT DENSITY IN MAIZE-PEANUT INTERCROPPING[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 432-446.
[6] Wen-Feng CONG, Chaochun ZHANG, Chunjie LI, Guangzhou WANG, Fusuo ZHANG. DESIGNING DIVERSIFIED CROPPING SYSTEMS IN CHINA: THEORY, APPROACHES AND IMPLEMENTATION[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 362-372.
[7] Xiaoqiang JIAO, Derara Sori FEYISA, Jasper KANOMANYANGA, Ngula David MUTTENDANGO, Shingirai MUDARE, Amadou NDIAYE, Bilisuma KABETO, Felix Dapare DAKORA, Fusuo ZHANG. Science and Technology Backyard model: implications for sustainable agriculture in Africa[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 390-400.
[8] Yadong YANG, Xiaomin FENG, Yuegao HU, Zhaohai ZENG. The diazotrophic community in oat rhizosphere: effects of legume intercropping and crop growth stage[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 162-171.
[9] Yuanmei ZUO,Zhenjiao ZHANG,Caihong LIU,Weina ZHANG. Achieving food security and high production of bioenergy crops through intercropping with efficient resource use in China[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 134-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed