|
|
THE 4C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY |
Eric JUSTES1( ), Laurent BEDOUSSAC2, Christos DORDAS3, Ela FRAK4, Gaetan LOUARN4, Simon BOUDSOCQ5, Etienne-Pascal JOURNET6,7, Anastasios LITHOURGIDIS3, Chrysanthi PANKOU3, Chaochun ZHANG8, Georg CARLSSON9, Erik Steen JENSEN9, Christine WATSON10, Long LI8 |
1. CIRAD, Persyst Department, 34398 Montpellier, France 2. AGIR, Univ Toulouse, ENSFEA, INRAE, Castanet-Tolosan, France 3. School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece 4. INRAE, UR4, URP3F, 86600 Lusignan, France 5. INRAE, UMR Eco&Sols, 34398 Montpellier, France 6. AGIR, Univ Toulouse, INRAE, Castanet-Tolosan, France 7. LIPM, Univ Toulouse, CNRS, Castanet-Tolosan, France 8. China Agriculture University (CAU), Beijing 100193, China 9. Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden 10. Scotland’s Rural College (SRUC), Aberdeen, UK |
|
|
Abstract ● The 4C approach considers intercropping performances as the result of joint 4C effects. ● Partial land equivalent ratios indicate which effect(s) are the major one(s). ● A major effect of complementarity is related to a better capture of abiotic resources. Modern agriculture needs to develop transition pathways toward agroecological, resilient and sustainable farming systems. One key pathway for such agroecological intensification is the diversification of cropping systems using intercropping and notably cereal-grain legume mixtures. Such mixtures or intercrops have the potential to increase and stabilize yields and improve cereal grain protein concentration in comparison to sole crops. Species mixtures are complex and the 4C approach is both a pedagogical and scientific way to represent the combination of four joint effects of Competition, Complementarity, Cooperation, and Compensation as processes or effects occurring simultaneously and dynamically between species over the whole cropping cycle. Competition is when plants have fairly similar requirements for abiotic resources in space and time, the result of all processes that occur when one species has a greater ability to use limiting resources (e.g., nutrients, water, space, light) than others. Complementarity is when plants grown together have different requirements for abiotic resources in space, time or form. Cooperation is when the modification of the environment by one species is beneficial to the other(s). Compensation is when the failure of one species is compensated by the other(s) because they differ in their sensitivity to abiotic stress. The 4C approach allows to assess the performance of arable intercropping versus classical sole cropping through understanding the use of abiotic resources.
|
Keywords
compensation
competition
complementarity
cooperation
interspecific interactions
land equivalent ratio
light
nutrients
species mixtures
water
|
Corresponding Author(s):
Eric JUSTES
|
Just Accepted Date: 02 August 2021
Online First Date: 25 August 2021
Issue Date: 26 September 2021
|
|
1 |
E Malézieux, Y Crozat, C Dupraz, M Laurans, D Makowski, H Ozier-Lafontaine, B Rapidel, Tourdonnet S de, M Valantin-Morison. Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 2009, 29( 1): 43– 62
https://doi.org/10.1051/agro:2007057
|
2 |
A Wezel, M Casagrande, F Celette, J F Vian, A Ferrer, J Peigné. Agroecological practices for sustainable agriculture. Agronomy for Sustainable Development, 2014, 34( 1): 1– 20
https://doi.org/10.1007/s13593-013-0180-7
|
3 |
F Isbell, P R Adler, N Eisenhauer, D Fornara, K Kimmel, C Kremen, D K Letourneau, M Liebman, H W Polley, S Quijas, M Scherer-Lorenzen. Benefits of increasing plant diversity in sustainable agroecosystems. Journal of Ecology, 2017, 105( 4): 871– 879
https://doi.org/10.1111/1365-2745.12789
|
4 |
J M Meynard, F Charrier, M Fares, M Le Bail, M B Magrini, A Charlier, A Messean. Socio-technical lock-in hinders crop diversification in France. Agronomy for Sustainable Development, 2018, 38( 5): 54
https://doi.org/10.1007/s13593-018-0535-1
|
5 |
R Bommarco, D Kleijn, S G Potts. Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology & Evolution, 2013, 28( 4): 230– 238
https://doi.org/10.1016/j.tree.2012.10.012
|
6 |
Vandermeer J H. The ecology of intercropping. Cambridge: Cambridge University Press, 1989
|
7 |
Y Yu, T J Stomph, D Makowski, W van der Werf. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 2015, 184 : 133– 144
https://doi.org/10.1016/j.fcr.2015.09.010
|
8 |
M D Raseduzzaman, E S Jensen. Does intercropping enhance yield stability in arable crop production? A meta-analysis. European Journal of Agronomy, 2017, 91 : 25– 33
https://doi.org/10.1016/j.eja.2017.09.009
|
9 |
M O Martin-Guay, A Paquette, J Dupras, D Rivest. The new Green Revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment, 2018, 615 : 767– 772
https://doi.org/10.1016/j.scitotenv.2017.10.024
|
10 |
L L Mao, L Z Zhang, W Q Li, W van der Werf, J H Sun, H L L Spiertz, L Li. Yield advantage and water saving in maize/pea intercrop. Field Crops Research, 2012, 138 : 11– 20
https://doi.org/10.1016/j.fcr.2012.09.019
|
11 |
L Bedoussac, E P Journet, H Hauggaard-Nielsen, C Naudin, G Corre−Hellou, E S Jensen, L Prieur, E Justes. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agronomy for Sustainable Development, 2015, 35( 3): 911– 935
https://doi.org/10.1007/s13593-014-0277-7
|
12 |
J Zhu, W van der Werf, N P R Anten, J Vos, J B Evers. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytologist, 2015, 207( 4): 1213– 1222
https://doi.org/10.1111/nph.13416
|
13 |
E S Jensen, G Carlsson, H Haugaard-Nielsen. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agronomy for Sustainable Development, 2020, 40( 1): 5
https://doi.org/10.1007/s13593-020-0607-x
|
14 |
B Li, Y Y Li, H M Wu, F F Zhang, C J Li, X X Li, H Lambers, L Li. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113( 23): 6496– 6501
https://doi.org/10.1073/pnas.1523580113
|
15 |
L Li, S M Li, J H Sun, L L Zhou, X G Bao, H G Zhang, F S Zhang. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104( 27): 11192– 11196
https://doi.org/10.1073/pnas.0704591104
|
16 |
P Hinsinger, E Betencourt, L Bernard, A Brauman, C Plassard, J Shen, X Tang, F Zhang. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology, 2011, 156( 3): 1078– 1086
https://doi.org/10.1104/pp.111.175331
|
17 |
Trenbath B R. Plant interactions in mixed crop communities. In: Papendick R I, Sanchez P A, Triplett G B, eds. Multiple Cropping. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 1976, 129–169
|
18 |
R Dybzinski, D Tilman. Chapter II Competition and coexistence in plant communities 5. In: Levin S A, Carpenter S R, Godfray H C J, Kinzig A P, Loreau M, Losos J B, Walker B, Wilcove D S, edsThe Princeton Guide to Eclogy. Princeton: Princeton University Press, 2009, 186– 195
|
19 |
Liebmann M. Polyculture cropping systems. In: Altieri M A, ed. Agroecology: The Science of Sustainable Agriculture. Westview Press, 1995, 205–218
|
20 |
Y X Liu, J H Sun, F F Zhang, L Li. The plasticity of root distribution and nitrogen uptake contributes to recovery of maize growth at late growth stages in wheat/maize intercropping. Plant and Soil, 2020, 447( 1−2): 39– 53
https://doi.org/10.1007/s11104-019-04034-9
|
21 |
V Loïc, B Laurent, J Etienne-Pascal, J Eric. Yield gap analysis extended to marketable yield reveals the profitability of organic lentil−spring wheat intercrops. Agronomy for Sustainable Development, 2018, 38( 4): 39
https://doi.org/10.1007/s13593-018-0515-5
|
22 |
R W Willey, D S O Osiru. Studies on mixtures of maize and beans (Phaseolus vulgaris) with special reference to plant population. Journal of Agricultural Science, 1972, 79( 3): 519– 529
https://doi.org/10.1017/S0021859600025909
|
23 |
A C Williams, B C McCarthy. A new index of interspecific competition for replacement and additive designs. Ecological Research, 2001, 16( 1): 29– 40
https://doi.org/10.1046/j.1440-1703.2001.00368.x
|
24 |
L Bedoussac, E Justes. A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: application to durum wheat−winter pea intercrops. Field Crops Research, 2011, 124( 1): 25– 36
https://doi.org/10.1016/j.fcr.2011.05.025
|
25 |
A Weigelt, P Jolliffe. Indices of plant competition. Journal of Ecology, 2003, 91( 5): 707– 720
https://doi.org/10.1046/j.1365-2745.2003.00805.x
|
26 |
M K Andersen, H Hauggaard-Nielsen, J Weiner, E S Jensen. Evaluating competitive dynamics in two- and three-component intercrops. Journal of Applied Ecology, 2007, 44( 3): 545– 551
https://doi.org/10.1111/j.1365-2664.2007.01289.x
|
27 |
R W Brooker, A E Bennett, W F Cong, T J Daniell, T S George, P D Hallett, C Hawes, P P M Iannetta, H G Jones, A J Karley, L Li, B M McKenzie, R J Pakeman, E Paterson, C Schöb, J Shen, G Squire, C A Watson, C Zhang, F Zhang, J Zhang, P J White. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206( 1): 107– 117
https://doi.org/10.1111/nph.13132
|
28 |
T Stomph, C Dordas, A Baranger, J de Rijk, B Dong, J Evers, C Gu, L Li, J Simon, E S Jensen, Q Wang, Y Wang, Z Wang, H Xu, C Zhang, L Zhang, W P Zhang, L Bedoussac, W van der Werf. Designing intercrops for high yield, yield stability and efficient use of resources: are there principles?. Advances in Agronomy, 2020, 160 : 1– 50
https://doi.org/10.1016/bs.agron.2019.10.002
|
29 |
M A Awal, H Koshi, T Ikeda. Radiation interception and use by maize/peanut intercrop canopy. Agricultural and Forest Meteorology, 2006, 139( 1−2): 74– 83
https://doi.org/10.1016/j.agrformet.2006.06.001
|
30 |
M N Mahallati, A Koocheki, F Mondani, H Feizi, S Amirmoradi. Determination of optimal strip width in strip intercropping of maize (Zea mays L.) and bean (Phaseolus vulgaris L.) in Northeast Iran. Journal of Cleaner Production, 2015, 106 : 343– 350
https://doi.org/10.1016/j.jclepro.2014.10.099
|
31 |
Z Wang, X Zhao, P Wu, J He, X Chen, Y Gao, X C Cao. Radiation interception and utilization by wheat/maize strip intercropping systems. Agricultural and Forest Meteorology, 2015, 204 : 58– 66
https://doi.org/10.1016/j.agrformet.2015.02.004
|
32 |
F Gou, M K van Ittersum, E Simon, P A Leffelaar, P E L van der Putten, L Zhang, W van der Werf. Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. European Journal of Agronomy, 2017, 84 : 125– 139
https://doi.org/10.1016/j.eja.2016.10.014
|
33 |
B A Keating, P S Carberry. Resource capture and use in intercropping: solar radiation. Field Crops Research, 1993, 34( 3−4): 273– 301
https://doi.org/10.1016/0378-4290(93)90118-7
|
34 |
F Küchenmeister, K Küchenmeister, N Wrage, M Kayser, J Isselstein. Yield and yield stability in mixtures of productive grassland species: does species number or functional group composition matter?. Grassland Science, 2012, 58( 2): 94– 100
https://doi.org/10.1111/j.1744-697X.2012.00242.x
|
35 |
A Lithourgidis, C Dordas, C A Damalsa, D N Vlachostergios. Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 2011, 5( 4): 396– 410
|
36 |
L Zhang, W van der Werf, L Bastiaans, S Zhang, B Li, J H J Spiertz. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research, 2008, 107( 1): 29– 42
https://doi.org/10.1016/j.fcr.2007.12.014
|
37 |
Y Gao, A Duan, X Qiu, J Sun, J Zhang, H Liu, H Wang. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agronomy Journal, 2010, 102( 4): 1149– 1157
https://doi.org/10.2134/agronj2009.0409
|
38 |
R B Matthews, S N Azam-Ali, R A Saffell, J M Peacock, J H Williams. Plant growth and development in relation to the microclimate of a sorghum groundnut intercrop. Agricultural and Forest Meteorology, 1991, 53( 4): 285– 301
https://doi.org/10.1016/0168-1923(91)90048-U
|
39 |
H Smith. Light quality, photoperception and plant strategy. Annual Review of Plant Physiology, 1982, 33( 1): 481– 518
https://doi.org/10.1146/annurev.pp.33.060182.002405
|
40 |
Mohr H. Interaction between Phytochrome and Hormones. In: Mohr H, ed. Lectures on Photomorphogenesis. Springer, 1972, 118–124
|
41 |
A J Escobar-Gutiérrez, D Combes, M Rakocevic, Berranger C De, A Eprinchard-Ciesla, H Sinoquet, C Varlet-Grancher. Functional relationship to estimate Morphogenetically Active Radiation (MAR) from PAR and solar broadband irradiance measurements: the case of a sorghum crop. Agricultural and Forest Meteorology, 2009, 149( 8): 1244– 1253
https://doi.org/10.1016/j.agrformet.2009.02.011
|
42 |
C L Ballaré, R A Sanchez, A L Scopel, J J Casal, C M Ghersa. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant, Cell & Environment, 1987, 10( 7): 551– 557
|
43 |
V A Deregibus, R A Sanchez, J J Casal. Effect of light quality on tiller production in Lolium spp. Plant Physiology, 1983, 72( 3): 900– 902
https://doi.org/10.1104/pp.72.3.900
|
44 |
R H Skinner, S R Simmons. Modulation of leaf elongation, tiller appearance and tiller senescence in spring barley by far-red light. Plant, Cell & Environment, 1993, 16( 5): 555– 562
https://doi.org/10.1111/j.1365-3040.1993.tb00903.x
|
45 |
M J Kasperbauer, D L Karlen. Light-mediated bioregulation of tillering and photosynthate partitioning in wheat. Physiologia Plantarum, 1986, 66( 1): 159– 163
https://doi.org/10.1111/j.1399-3054.1986.tb01250.x
|
46 |
C L Ballaré, A L Scopel, R A Sanchez. Foraging for light: photosensory ecology and agricultural implications. Plant, Cell & Environment, 1997, 20( 6): 820– 825
https://doi.org/10.1046/j.1365-3040.1997.d01-112.x
|
47 |
L Bedoussac, E Justes. Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat−winter pea intercrop. Plant and Soil, 2010, 330( 1−2): 37– 54
https://doi.org/10.1007/s11104-010-0303-8
|
48 |
L L Mao, L Z Zhang, W Q Li, W van der Werf, J H Sun, H Spiertz, L Li. Yield advantage and water saving in maize/pea intercrop. Field Crops Research, 2012, 138 : 11– 20
https://doi.org/10.1016/j.fcr.2012.09.019
|
49 |
M X Tan, F Gou, T J Stomph, J Wang, W Yin, L Z Zhang, Q Chai, W Van der Werf. Dynamic process-based modelling of crop growth and competitive water extraction in relay strip intercropping: model development and application to wheat−maize intercropping. Field Crops Research, 2020, 246 : 107613
https://doi.org/10.1016/j.fcr.2019.107613
|
50 |
C Pankou, A Lithourgidis, C Dordas. Effect of irrigation on intercropping systems of wheat (Triticum aestivum L.) with Pea (Pisum sativum L.). Agronomy, 2021, 11( 2): 283
https://doi.org/10.3390/agronomy11020283
|
51 |
A Ghanbari, M Dahmardeh, B A Siahsar, M Ramroudi. Effect of maize (Zea mays L.)−cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment. Journal of Food Agriculture and Environment, 2010, 8( 1): 102– 108
|
52 |
S Walker, H O Ogindo. The water budget of rainfed maize and bean intercrop. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28( 20-27): 919– 926
|
53 |
L Li, D Tilman, H Lambers, F S Zhang. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203( 1): 63– 69
https://doi.org/10.1111/nph.12778
|
54 |
E S Jensen. Grain yield, symbiotic N2-fixation and interspecific competition for inorganic N in pea−barley intercrops. Plant and Soil, 1996, 182( 1): 25– 38
https://doi.org/10.1007/BF00010992
|
55 |
C Rodriguez, G Carlsson, J E Englund, A Flöhr, E Pelzer, M H Jeuffroy, D Makowski, E S Jensen. Grain legume−cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis. European Journal of Agronomy, 2020, 118 : 126077
https://doi.org/10.1016/j.eja.2020.126077
|
56 |
G Louarn, E Pereira-Lopès, J Fustec, B Mary, A S Voisin, Faccio Carvalho P C de, F Gastal. The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality. Plant and Soil, 2015, 389( 1−2): 289– 305
https://doi.org/10.1007/s11104-014-2354-8
|
57 |
Z Xu, C J Li, C C Zhang, Y Yu, W van der Werf, F S Zhang. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Research, 2020, 246 : 107661
https://doi.org/10.1016/j.fcr.2019.107661
|
58 |
Y Yu, D Makowski, T J Stomph, W van der Werf. Robust Increases of land equivalent ratio with temporal niche differentiation: a meta-quantile regression. Agronomy Journal, 2016, 108( 6): 2269– 2279
https://doi.org/10.2134/agronj2016.03.0170
|
59 |
E S Jensen. Barley uptake of N deposited in the rhizosphere of associated field pea. Soil Biology & Biochemistry, 1996, 28( 2): 159– 168
https://doi.org/10.1016/0038-0717(95)00134-4
|
60 |
P M Chalk, M B Peoples, A M McNeill, R M Boddey, M J Unkovich, M J Gardener, C F Silva, D Chen. Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15N-enriched techniques. Soil Biology & Biochemistry, 2014, 73 : 10– 21
https://doi.org/10.1016/j.soilbio.2014.02.005
|
61 |
G Louarn, L Bedoussac, N Gaudio, E P Journet, D Moreau, E S Jensen, E Justes. Plant nitrogen nutrition status in species mixtures—A review of concepts and methods. European Journal of Agronomy, 2021, 124 : 126229
https://doi.org/10.1016/j.eja.2021.126229
|
62 |
L Li, J H Sun, F S Zhang, X L Li, Z Rengel, S C Yang. Wheat/maize or wheat/soybean strip intercropping II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research, 2001, 71( 3): 173– 181
https://doi.org/10.1016/S0378-4290(01)00157-5
|
63 |
L Li, J H Sun, F S Zhang, X L Li, S C Yang, Z Rengel. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crops Research, 2001, 71( 2): 123– 137
https://doi.org/10.1016/S0378-4290(01)00156-3
|
64 |
X F Li, C B Wang, W P Zhang, L H Wang, X L Tian, S C Yang, W L Jiang, J van Ruijven, L Li. The role of complementarity and selection effects in P acquisition of intercropping systems. Plant and Soil, 2018, 422( 1−2): 479– 493
https://doi.org/10.1007/s11104-017-3487-3
|
65 |
X Y Tang, C C Zhang, Y Yu, J B Shen, W van der Werf, F S Zhang. Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis. Plant and Soil, 2021, 460( 1−2): 89– 104
https://doi.org/10.1007/s11104-020-04768-x
|
66 |
M R Rao, R W Willey. Evaluation of yield stability in intercropping: studies on sorghum/pigeonpea. Experimental Agriculture, 1980, 16( 2): 105– 116
https://doi.org/10.1017/S0014479700010796
|
67 |
Chongtham I R, Flöhr A, Albertsson J, Zachmann J, Munz S, Jensen E S. Intercropping as an Ecological Precision Farming tool to deal with extreme weather and field heterogeneity. In: Proceedings of Agricultural Research for Development Conference, Agri4D 2019. Zero hunger by 2030, our shared challenge! Drivers of change and sustainable food systems. Uppsala: Swedish University of Agricultural Sciences (SLU), 2019
|
68 |
A Hector, B Schmid, C Beierkuhnlein, M C Caldeira, M Diemer, P G Dimitrakopoulos, J A Finn, H Freitas, P S Giller, J Good, R Harris, P Hogberg, K Huss-Danell, J Joshi, A Jumpponen, C Korner, P W Leadley, M Loreau, A Minns, C P H Mulder, G O’Donovan, S J Otway, J S Pereira, A Prinz, D J Read, M Scherer-Lorenzen, E D Schulze, A S D Siamantziouras, E M Spehn, A C Terry, A Y Troumbis, F I Woodward, S Yachi, J H Lawton. Plant diversity and productivity experiments in european grasslands. Science, 1999, 286( 5442): 1123– 1127
https://doi.org/10.1126/science.286.5442.1123
|
69 |
B J Cardinale, J P Wright, M W Cadotte, I T Carroll, A Hector, D S Srivastava, M Loreau, J J Weis. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States, 2007, 104( 46): 18123– 18128
https://doi.org/10.1073/pnas.0709069104
|
70 |
N Gaudio, A J Escobar-Gutierrez, P Casadebaig, J B Evers, F Gérard, G Louarn, N Colbach, S Munz, M Launay, H Marrou, R Barillot, P Hinsinger, J E Bergez, D Combes, J L Durand, E Frak, L Pagès, C Pradal, S Saint-Jean, der Werf W van, E Justes. Current knowledge and future research opportunities for modeling annual crop mixtures. A review. Agronomy for Sustainable Development, 2019, 39( 2): 20
https://doi.org/10.1007/s13593-019-0562-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|