Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (4) : 523-535    https://doi.org/10.15302/J-FASE-2022466
REVIEW
ECOLOGICAL NETWORKS IN AGROECOSYSTEMS: APPROACHES AND APPLICATIONS
Ying GONG, Langqin YU, Lei ZHAO()
Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
 Download: PDF(1866 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Agricultural intensification reduced the complexity and connectance of soil food webs.

● Agricultural intensification impaired the robustness of pollination networks.

● High connectance in co-occurrence networks indicates efficient nutrient utilization.

Complex network theory has been increasingly used in various research areas, including agroecosystems. This paper summarizes the basic concepts and approaches commonly used in complex network theory, and then reviews recent studies on the applications in agroecosystems of three types of common ecological networks, i.e., food webs, pollination networks and microbial co-occurrence networks. In general, agricultural intensification is considered to be a key driver of the change of agroecosystems. It causes the simplification of landscape, leads to the loss of biocontrol through cascading effect in food webs, and also reduces the complexity and connectance of soil food webs. For pollination networks, agricultural intensification impaired the robustness by reducing specialization and enhancing generality. The microbial co-occurrence networks with high connectance and low modularity generally corresponded to high efficiency in utilization of nutrients, and high resistance to crop pathogens. This review aims to show the readers the advances of ecological networks in agroecosystems and inspire the researchers to conduct their studies in a new network perspective.

Keywords bipartite network      co-occurrence network      food web      network theory     
Corresponding Author(s): Lei ZHAO   
Just Accepted Date: 09 September 2022   Online First Date: 27 September 2022    Issue Date: 07 November 2022
 Cite this article:   
Ying GONG,Langqin YU,Lei ZHAO. ECOLOGICAL NETWORKS IN AGROECOSYSTEMS: APPROACHES AND APPLICATIONS[J]. Front. Agr. Sci. Eng. , 2022, 9(4): 523-535.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2022466
https://academic.hep.com.cn/fase/EN/Y2022/V9/I4/523
Concept Equation Description
Adjacent matrix A=[ ai j] A matrix describing a finite graph, in which its element aij indicates the relationship from the ith node to the jth node
Network size S Number of nodes in the network
Connectance* C=L/S 2 The proportion of realized links over all possible links. L means the total number of links in the network
Nestedness The tendency for nodes to interact with subsets of the interaction partners of better-connected nodes[15]
Robustness R50 The number of primary removel needed to attain 50% of node loss[16]
Modularity* Q=14m ij( a ijDiDj 2m)sis j The fraction of the edges that fall within the given groups minus the expected fraction if edges were distributed at random. Here m is the total number of edges. si = 1 if the ith node belongs to group 1 and si = −1 if it belongs to group 2[17]
Centrality A measure describing the importance of nodes, including degree centrality, betweenness centrality and closeness centrality
Degree Di= j aij + j aj i Number of links connected to the ith node
Closeness Ci= 1/ j dji A measure describing how close on average of the ith node to the other nodes. Here dji is the shortest path length from the jth node to the ith node
Betweenness Bi= vij σvj(i)σvj A measure describing the probability the ith node located in the shortest path from one node to another node. σvj is the number of shortest paths from the vth node to the jth node, and σvj(i) is the number of shortest paths from the vth node to the jth node which go through the ith node
Motif Simple patterns of interconnections from which networks are built[18]
Rich core A subgroup of nodes which have high degree and are well-connected with each other[19]
Compartment Also known as cluster, module or community in graph theory. Usually a network can be divided into several compartments, which are subgroups of nodes. Within compartments, nodes are well connected, and between compartments, nodes are rarely connected[20]
Tab.1  Summary table of the concepts in complex network theory
Fig.1  Substructures of networks: (a) a special motif: intraguild predation; (b) the core-periphery structure; and (c) a network consists of two compartments.
Fig.2  Three types of networks: (a) a food web in which the green nodes indicating producers and detritus, the blue nodes indicating consumers, and the red node indicating the top predator; (b) a pollination network with the bottom level as plants and the top level as pollinators; and (c) a co-occurrence network with nodes as OTUs (different colors indicates different taxa) and links as correlations (red for positive ones and green for negative ones).
1 E T, Berthet V, Bretagnolle S, Lavorel R, Sabatier M, Tichit B Segrestin. Applying ecological knowledge to the innovative design of sustainable agroecosystems. Journal of Applied Ecology, 2019, 56( 1): 44–51
https://doi.org/10.1111/1365-2664.13173
2 A D, Barnes M, Jochum J S, Lefcheck N, Eisenhauer C, Scherber M I, O’Connor Ruiter P, de U Brose. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology & Evolution, 2018, 33( 3): 186–197
https://doi.org/10.1016/j.tree.2017.12.007 pmid: 29325921
3 C, Pitteloud J C, Walser P, Descombes Santana N C, de S, Rasmann L Pellissier. The structure of plant-herbivore interaction networks varies along elevational gradients in the European Alps. Journal of Biogeography, 2021, 48( 2): 465–476
https://doi.org/10.1111/jbi.14014
4 A, Ma X, Lu C, Gray A, Raybould A, Tamaddoni-Nezhad G, Woodward D A Bohan. Ecological networks reveal resilience of agro-ecosystems to changes in farming management. Nature Ecology & Evolution, 2019, 3( 2): 260–264
https://doi.org/10.1038/s41559-018-0757-2 pmid: 30598528
5 L C, Ponisio M P, Gaiarsa C Kremen. Opportunistic attachment assembles plant-pollinator networks. Ecology Letters, 2017, 20( 10): 1261–1272
https://doi.org/10.1111/ele.12821 pmid: 28921857
6 B, Ma Y, Wang S, Ye S, Liu E, Stirling J A, Gilbert K, Faust R, Knight J K, Jansson C, Cardona L, Röttjers J Xu. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome, 2020, 8( 1): 82
https://doi.org/10.1186/s40168-020-00857-2 pmid: 32498714
7 R M May. Will a large complex system be stable. Nature, 1972, 238( 5364): 413–414
https://doi.org/10.1038/238413a0 pmid: 4559589
8 P Jordano. Patterns of mutualistic interactions in pollination and seed dispersal-connectance, dependence asymmetries, and coevolution. American Naturalist, 1987, 129( 5): 657–677
https://doi.org/10.1086/284665
9 Z Y, Cui R M, Ke Z Y, Pu X L, Ma Y H Wang. Learning traffic as a graph: a gated graph wavelet recurrent neural network for network-scale traffic prediction. Transportation Research Part C, Emerging Technologies, 2020, 115 : 102620
https://doi.org/10.1016/j.trc.2020.102620
10 N A, Christakis J H Fowler. The spread of obesity in a large social network over 32 years. New England Journal of Medicine, 2007, 357( 4): 370–379
https://doi.org/10.1056/NEJMsa066082 pmid: 17652652
11 J A, Firth J, Hellewell P, Klepac S, Kissler COVID-19 Working Group, CNMID A J, Kucharski L G Spurgin. Using a real-world network to model localized COVID-19 control strategies. Nature Medicine, 2020, 26( 10): 1616–1622
https://doi.org/10.1038/s41591-020-1036-8 pmid: 32770169
12 L N, Joppa J, Bascompte J M, Montoya R V, Solé J, Sanderson S L Pimm. Reciprocal specialization in ecological networks. Ecology Letters, 2009, 12( 9): 961–969
https://doi.org/10.1111/j.1461-0248.2009.01341.x pmid: 19566586
13 I, Milns C M, Beale V A Smith. Revealing ecological networks using Bayesian network inference algorithms. Ecology, 2010, 91( 7): 1892–1899
https://doi.org/10.1890/09-0731.1 pmid: 20715607
14 J, Zhou Y, Deng F, Luo Z, He Q, Tu X Zhi. Functional molecular ecological networks. mBio, 2010, 1( 4): e00169–10
https://doi.org/10.1128/mBio.00169-10 pmid: 20941329
15 P P A, Staniczenko J C, Kopp S Allesina. The ghost of nestedness in ecological networks. Nature Communications, 2013, 4( 1): 1391
https://doi.org/10.1038/ncomms2422 pmid: 23340431
16 L, Zhao H, Zhang E J, O’Gorman W, Tian A, Ma J C, Moore S R, Borrett G Woodward. Weighting and indirect effects identify keystone species in food webs. Ecology Letters, 2016, 19( 9): 1032–1040
https://doi.org/10.1111/ele.12638 pmid: 27346328
17 M E J Newman. Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103( 23): 8577–8582
https://doi.org/10.1073/pnas.0601602103 pmid: 16723398
18 R, Milo S, Shen-Orr S, Itzkovitz N, Kashtan D, Chklovskii U Alon. Network motifs: simple building blocks of complex networks. Science, 2002, 298( 5594): 824–827
https://doi.org/10.1126/science.298.5594.824 pmid: 12399590
19 X K, Lu C, Gray L E, Brown M E, Ledger A M, Milner R J, Mondragon G, Woodward A Ma. Drought rewires the cores of food webs. Nature Climate Change, 2016, 6( 9): 875–878
https://doi.org/10.1038/nclimate3002
20 D B, Stouffer J Bascompte. Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108( 9): 3648–3652
https://doi.org/10.1073/pnas.1014353108 pmid: 21307311
21 L, Zhao H, Zhang W, Tian X Xu. Identifying compartments in ecological networks based on energy channels. Ecology and Evolution, 2018, 8( 1): 309–318
https://doi.org/10.1002/ece3.3648 pmid: 29321873
22 G, Csardi T Nepusz. The igraph software package for complex network research. InterJournal, Complex Systems, 2005, 1695
23 Core Team R. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2018
24 K, Guseva S, Darcy E, Simon L V, Alteio A, Montesinos-Navarro C Kaiser. From diversity to complexity: microbial networks in soils. Soil Biology & Biochemistry, 2022, 169 : 108604
https://doi.org/10.1016/j.soilbio.2022.108604 pmid: 35712047
25 L N, Hudson R, Emerson G B, Jenkins K, Layer M E, Ledger D E, Pichler M S A, Thompson E J, O’Gorman G, Woodward D C Reuman. Cheddar: analysis and visualisation of ecological communities in R. Methods in Ecology and Evolution, 2013, 4( 1): 99–104
https://doi.org/10.1111/2041-210X.12005
26 S R, Borrett M K Lau. EnaR: an R package for ecosystem network analysis. Methods in Ecology and Evolution, 2014, 5( 11): 1206–1213
https://doi.org/10.1111/2041-210X.12282
27 Ruiter P C, de A M, Neutel J C Moore. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science, 1995, 269( 5228): 1257–1260
https://doi.org/10.1126/science.269.5228.1257 pmid: 17732112
28 P R Jr Guimarães. The structure of ecological networks across levels of organization. Annual Review of Ecology, Evolution, and Systematics, 2020, 51( 1): 433–460
https://doi.org/10.1146/annurev-ecolsys-012220-120819
29 C F, Dormann B, Gruber J Fründ. Introducing the bipartite package: analysing ecological networks. R News, 2008, 8 : 8–11
30 M J O, Pocock D M, Evans J Memmott. The robustness and restoration of a network of ecological networks. Science, 2012, 335( 6071): 973–977
https://doi.org/10.1126/science.1214915 pmid: 22363009
31 N Blüthgen. Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic and Applied Ecology, 2010, 11( 3): 185–195
https://doi.org/10.1016/j.baae.2010.01.001
32 D P, Vázquez N, Blüthgen L, Cagnolo N P Chacoff. Uniting pattern and process in plant-animal mutualistic networks: a review. Annals of Botany, 2009, 103( 9): 1445–1457
https://doi.org/10.1093/aob/mcp057 pmid: 19304996
33 K, Fan P, Weisenhorn J A, Gilbert H Chu. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biology & Biochemistry, 2018, 125 : 251–260
https://doi.org/10.1016/j.soilbio.2018.07.022
34 V, Chillo D P, Vázquez J, Tavella L Cagnolo. Plant-plant co-occurrences under a complex land-use gradient in a temperate forest. Oecologia, 2021, 196( 3): 815–824
https://doi.org/10.1007/s00442-021-04953-4 pmid: 34110499
35 S, Zhao J, Liu S, Banerjee N, Zhou Z, Zhao K, Zhang M, Hu C Tian. Biogeographical distribution of bacterial communities in saline agricultural soil. Geoderma, 2020, 361 : 114095
https://doi.org/10.1016/j.geoderma.2019.114095
36 S, Green M, Serban R, Scholl N, Jones I, Brigandt W Bechtel. Network analyses in systems biology: new strategies for dealing with biological complexity. Synthese, 2018, 195( 4): 1751–1777
https://doi.org/10.1007/s11229-016-1307-6
37 L, Röttjers K Faust. From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiology Reviews, 2018, 42( 6): 761–780
https://doi.org/10.1093/femsre/fuy030 pmid: 30085090
38 S, Wang U Brose. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecology Letters, 2018, 21( 1): 9–20
https://doi.org/10.1111/ele.12865 pmid: 29057554
39 J, Fründ C F, Dormann A, Holzschuh T Tscharntke. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology, 2013, 94( 9): 2042–2054
https://doi.org/10.1890/12-1620.1 pmid: 24279275
40 D, García I, Donoso J Rodriguez-Perez. Frugivore biodiversity and complementarity in interaction networks enhance landscape-scale seed dispersal function. Functional Ecology, 2018, 32( 12): 2742–2752
https://doi.org/10.1111/1365-2435.13213
41 M, Delgado-Baquerizo P B, Reich C, Trivedi D J, Eldridge S, Abades F D, Alfaro F, Bastida A A, Berhe N A, Cutler A, Gallardo L, García-Velázquez S C, Hart P E, Hayes J Z, He Z Y, Hseu H W, Hu M, Kirchmair S, Neuhauser C A, Pérez S C, Reed F, Santos B W, Sullivan P, Trivedi J T, Wang L, Weber-Grullon M A, Williams B K Singh. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 2020, 4( 2): 210–220
https://doi.org/10.1038/s41559-019-1084-y pmid: 32015427
42 S, Jiao Y, Lu G Wei. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology, 2022, 28( 1): 140–153
https://doi.org/10.1111/gcb.15917 pmid: 34610173
43 H, Wu B, Hu H, Han X, Cheng F Kang. Network analysis reveals the regulatory effect of mixed stands on ecosystem structure and functions in the Loess Plateau, China. Science of the Total Environment, 2022, 824 : 153588
https://doi.org/10.1016/j.scitotenv.2022.153588 pmid: 35134414
44 R M, Thompson U, Brose J A, Dunne R O Jr, Hall S, Hladyz R L, Kitching N D, Martinez H, Rantala T N, Romanuk D B, Stouffer J M Tylianakis. Food webs: reconciling the structure and function of biodiversity. Trends in Ecology & Evolution, 2012, 27( 12): 689–697
https://doi.org/10.1016/j.tree.2012.08.005 pmid: 22959162
45 D A, Wardle R D, Bardgett J N, Klironomos H, Setälä der Putten W H, van D H Wall. Ecological linkages between aboveground and belowground biota. Science, 2004, 304( 5677): 1629–1633
https://doi.org/10.1126/science.1094875 pmid: 15192218
46 D M, Evans M J O, Pocock J, Brooks J Memmott. Seeds in farmland food-webs: resource importance, distribution and the impacts of farm management. Biological Conservation, 2011, 144( 12): 2941–2950
https://doi.org/10.1016/j.biocon.2011.08.013
47 M, Damien Lann C, Le N, Desneux L, Alford Hassan D, Al R, Georges Baaren J Van. Flowering cover crops in winter increase pest control but not trophic link diversity. Agriculture, Ecosystems & Environment, 2017, 247 : 418–425
https://doi.org/10.1016/j.agee.2017.07.015
48 Z H, Zhao H S, Sandhu F, Gao D H He. Shifts in natural enemy assemblages resulting from landscape simplification account for biocontrol loss in wheat fields. Ecological Research, 2015, 30( 3): 493–498
https://doi.org/10.1007/s11284-015-1245-7
49 V, Gagic T, Tscharntke C F, Dormann B, Gruber A, Wilstermann C Thies. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proceedings of the Royal Society B: Biological Sciences, 2011, 278( 1720): 2946–2953
https://doi.org/10.1098/rspb.2010.2645 pmid: 21325327
50 V, Gagic S, Hänke C, Thies C, Scherber Z, Tomanović T Tscharntke. Agricultural intensification and cereal aphid-parasitoid-hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia, 2012, 170( 4): 1099–1109
https://doi.org/10.1007/s00442-012-2366-0 pmid: 22644050
51 P, Yadav K, Duckworth P S Grewal. Habitat structure influences below ground biocontrol services: a comparison between urban gardens and vacant lots. Landscape and Urban Planning, 2012, 104( 2): 238–244
https://doi.org/10.1016/j.landurbplan.2011.10.018
52 C D, Sprunger S W, Culman A L, Peralta S T, Dupont J T, Lennon S S Snapp. Perennial grain crop roots and nitrogen management shape soil food webs and soil carbon dynamics. Soil Biology & Biochemistry, 2019, 137 : 107573
https://doi.org/10.1016/j.soilbio.2019.107573
53 S, Adl M, Liu X Xu. Mapping soil nitrogen fractionation. Rhizosphere, 2020, 16 : 100279
https://doi.org/10.1016/j.rhisph.2020.100279
54 M G, Kibblewhite K, Ritz M J Swift. Soil health in agricultural systems. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2008, 363( 1492): 685–701
https://doi.org/10.1098/rstb.2007.2178 pmid: 17785275
55 Vries F T, de M D Wallenstein. Below-ground connections underlying above-ground food production: a framework for optimising ecological connections in the rhizosphere. Journal of Ecology, 2017, 105( 4): 913–920
https://doi.org/10.1111/1365-2745.12783
56 E, Conti Mauro L S, Di A, Pluchino C Mulder. Testing for top-down cascading effects in a biomass-driven ecological network of soil invertebrates. Ecology and Evolution, 2020, 10( 14): 7062–7072
https://doi.org/10.1002/ece3.6408 pmid: 32760511
57 M A, Tsiafouli E, Thébault S P, Sgardelis Ruiter P C, de der Putten W H, van K, Birkhofer L, Hemerik Vries F T, de R D, Bardgett M V, Brady L, Bjornlund H B, Jørgensen S, Christensen T D, Hertefeldt S, Hotes Hol W H, Gera J, Frouz M, Liiri S R, Mortimer H, Setälä J, Tzanopoulos K, Uteseny V, Pižl J, Stary V, Wolters K Hedlund. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 2015, 21( 2): 973–985
https://doi.org/10.1111/gcb.12752 pmid: 25242445
58 J M G, Bloor S, Si-Moussi P, Taberlet P, Carrère M Hedde. Analysis of complex trophic networks reveals the signature of land-use intensification on soil communities in agroecosystems. Scientific Reports, 2021, 11( 1): 18260
https://doi.org/10.1038/s41598-021-97300-9 pmid: 34521879
59 Y, Pressler E J, Foster J C, Moore M F Cotrufo. Coupled biochar amendment and limited irrigation strategies do not affect a degraded soil food web in a maize agroecosystem, compared to the native grassland. Global Change Biology. Bioenergy, 2017, 9( 8): 1344–1355
https://doi.org/10.1111/gcbb.12429
60 S, Sánchez-Moreno M, Cano A, López-Pérez Benayas J M Rey. Microfaunal soil food webs in Mediterranean semi-arid agroecosystems. Does organic management improve soil health. Applied Soil Ecology, 2018, 125 : 138–147
https://doi.org/10.1016/j.apsoil.2017.12.020
61 Y, Li Y, Chen J, Li Q, Sun J, Li J, Xu B, Liu Q, Lang Y Qiao. Organic management practices enhance soil food web biomass and complexity under greenhouse conditions. Applied Soil Ecology, 2021, 167 : 104010
https://doi.org/10.1016/j.apsoil.2021.104010
62 L, Henneron L, Bernard M, Hedde C, Pelosi C, Villenave C, Chenu M, Bertrand C, Girardin E Blanchart. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agronomy for Sustainable Development, 2015, 35( 1): 169–181
https://doi.org/10.1007/s13593-014-0215-8
63 G, Bongiorno N, Bodenhausen E K, Bünemann L, Brussaard S, Geisen P, Mäder C W, Quist J C, Walser Goede R G M de. Reduced tillage, but not organic matter input, increased nematode diversity and food web stability in European long-term field experiments. Molecular Ecology, 2019, 28( 22): 4987–5005
https://doi.org/10.1111/mec.15270 pmid: 31618508
64 N, Eisenhauer V, Hörsch J, Moeser S Scheu. Synergistic effects of microbial and animal decomposers on plant and herbivore performance. Basic and Applied Ecology, 2010, 11( 1): 23–34
https://doi.org/10.1016/j.baae.2009.11.001
65 R, Neilson D, Robinson C A, Marriott C M, Scrimgeour D, Hamilton J, Wishart B, Boag L L Handley. Above-ground grazing affects floristic composition and modifies soil trophic interactions. Soil Biology & Biochemistry, 2002, 34( 10): 1507–1512
https://doi.org/10.1016/S0038-0717(02)00122-0
66 B, Wang L, Wu D, Chen Y, Wu S, Hu L, Li Y Bai. Grazing simplifies soil micro-food webs and decouples their relationships with ecosystem functions in grasslands. Global Change Biology, 2020, 26( 2): 960–970
https://doi.org/10.1111/gcb.14841 pmid: 31529564
67 B, Wang Y, Wu D M, Chen S J, Hu Y F Bai. Legacy effect of grazing intensity mediates the bottom-up controls of resource addition on soil food webs. Journal of Applied Ecology, 2021, 58( 5): 976–987
https://doi.org/10.1111/1365-2664.13825
68 B, Wan X, Mei Z, Hu H, Guo X, Chen B S, Griffiths M Liu. Moderate grazing increases the structural complexity of soil micro-food webs by promoting root quantity and quality in a Tibetan alpine meadow. Applied Soil Ecology, 2021, 168 : 104161
https://doi.org/10.1016/j.apsoil.2021.104161
69 K S, Ramirez S, Geisen E, Morriën B L, Snoek der Putten W H van. Network analyses can advance above-belowground ecology. Trends in Plant Science, 2018, 23( 9): 759–768
https://doi.org/10.1016/j.tplants.2018.06.009 pmid: 30072227
70 P A, Ferreira D, Boscolo B F Viana. What do we know about the effects of landscape changes on plant-pollinator interaction networks. Ecological Indicators, 2013, 31 : 35–40
https://doi.org/10.1016/j.ecolind.2012.07.025
71 B M L, Morrison B J, Brosi R Dirzo. Agricultural intensification drives changes in hybrid network robustness by modifying network structure. Ecology Letters, 2020, 23( 2): 359–369
https://doi.org/10.1111/ele.13440 pmid: 31814265
72 B M L, Morrison R Dirzo. Distinct responses of antagonistic and mutualistic networks to agricultural intensification. Ecology, 2020, 101( 10): e03116
https://doi.org/10.1002/ecy.3116 pmid: 32530504
73 C, Martínez-Núñez P J Rey. Hybrid networks reveal contrasting effects of agricultural intensification on antagonistic and mutualistic motifs. Functional Ecology, 2021, 35( 6): 1341–1352
https://doi.org/10.1111/1365-2435.13800
74 O, Adedoja T Kehinde. Changes in interaction network topology and species composition of flower-visiting insects across three land use types. African Journal of Ecology, 2018, 56( 4): 964–971
https://doi.org/10.1111/aje.12527
75 A, Kovács-Hostyánszki R, Foldesi A, Baldi A, Endredi F Jordan. The vulnerability of plant-pollinator communities to honeybee decline: a comparative network analysis in different habitat types. Ecological Indicators, 2019, 97 : 35–50
https://doi.org/10.1016/j.ecolind.2018.09.047
76 M, Bustamante-Castillo B E, Hernández-Baños M D C Arizmendi. Hummingbird-plant visitation networks in agricultural and forested areas in a tropical dry forest region of Guatemala. Journal of Ornithology, 2020, 161( 1): 189–201
https://doi.org/10.1007/s10336-019-01712-4
77 T, LaBar C, Campbell S, Yang R, Albert K Shea. Restoration of plant-pollinator interaction networks via species translocation. Theoretical Ecology, 2014, 7( 2): 209–220
https://doi.org/10.1007/s12080-013-0211-7
78 S, Malena P, Meli A Rovere. Criteria to select vegetal species for restoration of plant-pollinator interactions in agricultural landscapes of the Pampa grassland (Argentina). Acta Oecologica, 2021, 111 : 103710
https://doi.org/10.1016/j.actao.2021.103710
79 V, Parra-Tabla M J, Campos-Navarrete G Arceo-Gomez. Plant-floral visitor network structure in a smallholder Cucurbitaceae agricultural system in the tropics: implications for the extinction of main floral visitors. Arthropod-Plant Interactions, 2017, 11( 5): 731–740
https://doi.org/10.1007/s11829-017-9529-1
80 L C, Ponisio Valpine P, de L K, M’Gonigle C Kremen. Proximity of restored hedgerows interacts with local floral diversity and species’ traits to shape long-term pollinator metacommunity dynamics. Ecology Letters, 2019, 22( 7): 1048–1060
https://doi.org/10.1111/ele.13257 pmid: 30938483
81 E F, Moreira D, Boscolo B F Viana. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales. PLoS One, 2015, 10( 4): e0123628
https://doi.org/10.1371/journal.pone.0123628 pmid: 25856293
82 J W, Redhead B A, Woodcock M J O, Pocock R F, Pywell A J, Vanbergen T H Oliver. Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecology Letters, 2018, 21( 12): 1821–1832
https://doi.org/10.1111/ele.13157 pmid: 30223295
83 L, Russo N, Debarros S, Yang K, Shea D Mortensen. Supporting crop pollinators with floral resources: network-based phenological matching. Ecology and Evolution, 2013, 3( 9): 3125–3140
https://doi.org/10.1002/ece3.703 pmid: 24101999
84 A M G F, Vilhena L S, Rabelo E M A F, Bastos S C Augusto. Acerola pollinators in the savanna of Central Brazil: temporal variations in oil-collecting bee richness and a mutualistic network. Apidologie, 2012, 43( 1): 51–62
https://doi.org/10.1007/s13592-011-0081-1
85 A M C, Sauve E, Thebault M J O, Pocock C Fontaine. How plants connect pollination and herbivory networks and their contribution to community stability. Ecology, 2016, 97( 4): 908–917
86 P, Theodorou K, Albig R, Radzeviciute J, Settele O, Schweiger T E, Murray R J Paxton. The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Functional Ecology, 2017, 31( 4): 838–847
https://doi.org/10.1111/1365-2435.12803
87 J Copley. Ecology goes underground. Nature, 2000, 406( 6795): 452–454
https://doi.org/10.1038/35020131 pmid: 10952284
88 K K, Shah S, Tripathi I, Tiwari J, Shrestha B, Modi N, Paudel B D Das. Role of soil microbes in sustainable crop production and soil health: a review. Agricultural Science and Technology, 2021, 13( 2): 109–118
https://doi.org/10.15547/ast.2021.02.019
89 G, Lima-Mendez K, Faust N, Henry J, Decelle S, Colin F, Carcillo S, Chaffron J C, Ignacio-Espinosa S, Roux F, Vincent L, Bittner Y, Darzi J, Wang S, Audic L, Berline G, Bontempi A M, Cabello L, Coppola F M, Cornejo-Castillo F, d’Ovidio Meester L, De I, Ferrera M J, Garet-Delmas L, Guidi E, Lara S, Pesant M, Royo-Llonch G, Salazar P, Sánchez M, Sebastian C, Souffreau C, Dimier M, Picheral S, Searson S, Kandels-Lewis G, Gorsky F, Not H, Ogata S, Speich L, Stemmann J, Weissenbach P, Wincker S G, Acinas S, Sunagawa P, Bork M B, Sullivan E, Karsenti C, Bowler Vargas C, de J Raes. Ocean plankton. Determinants of community structure in the global plankton interactome. Science, 2015, 348( 6237): 1262073
https://doi.org/10.1126/science.1262073 pmid: 25999517
90 D, Berry S Widder. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 2014, 5 : 219
https://doi.org/10.3389/fmicb.2014.00219 pmid: 24904535
91 F, Wani D, Ahmad T, Ali A Mushtaq. Role of microorganisms in nutrient mobilization and soil health—a review. Journal of Pure & Applied Microbiology, 2015, 9( 2): 1401–1410
92 M A, Selosse E, Baudoin P Vandenkoornhuyse. Symbiotic microorganisms, a key for ecological success and protection of plants. Comptes Rendus Biologies, 2004, 327( 7): 639–648
https://doi.org/10.1016/j.crvi.2003.12.008 pmid: 15344814
93 G, Zhang G, Wei F, Wei Z, Chen M, He S, Jiao Y, Wang L, Dong S Chen. Dispersal limitation plays stronger role in the community assembly of fungi relative to bacteria in rhizosphere across the arable area of medicinal plant. Frontiers in Microbiology, 2021, 12 : 713523
https://doi.org/10.3389/fmicb.2021.713523 pmid: 34484152
94 M, Cardinale M, Grube A, Erlacher J, Quehenberger G Berg. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environmental Microbiology, 2015, 17( 1): 239–252
https://doi.org/10.1111/1462-2920.12686 pmid: 25367329
95 W, Ma Z, Yang L, Liang Q, Ma G, Wang T Zhao. Characteristics of the fungal communities and co-occurrence networks in hazelnut tree root endospheres and rhizosphere soil. Frontiers in Plant Science, 2021, 12 : 749871
https://doi.org/10.3389/fpls.2021.749871 pmid: 34956257
96 R, Marasco E, Rolli M, Fusi G, Michoud D Daffonchio. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome, 2018, 6( 1): 3
https://doi.org/10.1186/s40168-017-0391-2 pmid: 29298729
97 V L, Brisson J E, Schmidt T R, Northen J P, Vogel A C M Gaudin. Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil. Scientific Reports, 2019, 9( 1): 15611
https://doi.org/10.1038/s41598-019-52148-y pmid: 31666614
98 J E, Schmidt A D, Kent V L, Brisson A C M Gaudin. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome, 2019, 7( 1): 146
https://doi.org/10.1186/s40168-019-0756-9 pmid: 31699148
99 L, Yan W, Zhang W, Duan Y, Zhang W, Zheng X Lai. Temporal bacterial community diversity in the Nicotiana tabacum rhizosphere over years of continuous monocropping. Frontiers in Microbiology, 2021, 12 : 641643
https://doi.org/10.3389/fmicb.2021.641643 pmid: 34113322
100 B, Pivato A, Semblat T, Guégan S, Jacquiod J, Martin F, Deau N, Moutier C, Lecomte J, Burstin P Lemanceau. Rhizosphere bacterial networks, but not diversity, are impacted by pea-wheat intercropping. Frontiers in Microbiology, 2021, 12 : 674556
https://doi.org/10.3389/fmicb.2021.674556 pmid: 34127925
101 Y, Chen M, Bonkowski Y, Shen B S, Griffiths Y, Jiang X, Wang B Sun. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. Microbiome, 2020, 8( 1): 4
https://doi.org/10.1186/s40168-019-0775-6 pmid: 31954405
102 J Y, Shang Y, Wu B, Huo L, Chen E T, Wang Y, Sui W F, Chen C F, Tian W X, Chen X H Sui. Potential of Bradyrhizobia inoculation to promote peanut growth and beneficial Rhizobacteria abundance. Journal of Applied Microbiology, 2021, 131( 5): 2500–2515
https://doi.org/10.1111/jam.15128 pmid: 33966321
103 M J, Tang Q, Zhu F M, Zhang W, Zhang J, Yuan K, Sun F J, Xu C C Dai. Enhanced nitrogen and phosphorus activation with an optimized bacterial community by endophytic fungus Phomopsis liquidambari in paddy soil. Microbiological Research, 2019, 221 : 50–59
https://doi.org/10.1016/j.micres.2019.02.005 pmid: 30825941
104 C A O, Schmid P, Schröder M, Armbruster M Schloter. Organic amendments in a long-term field trial— consequences for the bulk soil bacterial community as revealed by network analysis. Microbial Ecology, 2018, 76( 1): 226–239
https://doi.org/10.1007/s00248-017-1110-z pmid: 29188301
105 X, Wu Y, Liu Y, Shang D, Liu W, Liesack Z, Cui J, Peng F Zhang. Peat-vermiculite alters microbiota composition towards increased soil fertility and crop productivity. Plant and Soil, 2022, 470( 1−2): 21–34
https://doi.org/10.1007/s11104-021-04851-x
106 T, Wen M, Zhao T, Liu Q, Huang J, Yuan Q Shen. High abundance of Ralstonia solanacearum changed tomato rhizosphere microbiome and metabolome. BMC Plant Biology, 2020, 20( 1): 166
https://doi.org/10.1186/s12870-020-02365-9 pmid: 32293273
107 A J, Fernández-González M, Cardoni Cabanás C, Gómez-Lama A, Valverde-Corredor P J, Villadas M, Fernández-López J Mercado-Blanco. Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive. Microbiome, 2020, 8( 1): 11
https://doi.org/10.1186/s40168-020-0787-2 pmid: 32007096
108 Y, Ma P, Weisenhorn X, Guo D, Wang T, Yang Y, Shi H, Zhang H Chu. Effect of long-term fertilization on bacterial communities in wheat endosphere. Pedosphere, 2021, 31( 4): 538–548
https://doi.org/10.1016/S1002-0160(19)60838-6
[1] Jingjing PENG, Olatunde OLADELE, Xiaotong SONG, Xiaotang JU, Zhongjun JIA, Hangwei HU, Xuejun LIU, Shuikuan BEI, Anhui GE, Limei ZHANG, Zhenling CUI. OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE IN AGROECOSYSTEMS[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 333-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed