|
|
|
OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE IN AGROECOSYSTEMS |
Jingjing PENG1, Olatunde OLADELE1, Xiaotong SONG2, Xiaotang JU3, Zhongjun JIA4, Hangwei HU5, Xuejun LIU1, Shuikuan BEI1, Anhui GE2,6, Limei ZHANG2,6( ), Zhenling CUI1 |
1. College of Resources and Environmental Sciences; National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China 2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 3. College of Tropical Crops, Hainan University, Haikou 570228, China 4. Key Labortatory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China 5. Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC. 3010, Australia 6. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
|
|
Abstract ● Matching nitrification inhibitors with soil properties and nitrifiers is vital to achieve a higher NUE. ● Enhancing BNF, DNRA and microbial N immobilization processes via soil amendments can greatly contribute to less chemical N fertilizer input. ● Plant-associated microbiomes are critical for plant nutrient uptake, growth and fitness. ● Coevolutionary trophic relationships among soil biota need to be considered for improving crop NUE. Soil microbiomes drive the biogeochemical cycling of nitrogen and regulate soil N supply and loss, thus, pivotal nitrogen use efficiency (NUE). Meanwhile, there is an increasing awareness that plant associated microbiomes and soil food web interactions is vital for modulating crop productivity and N uptake. The rapid advances in modern omics-based techniques and biotechnologies make it possible to manipulate soil-plant microbiomes for improving NUE and reducing N environmental impacts. This paper summarizes current progress in research on regulating soil microbial N cycle processes for NUE improvement, plant-microbe interactions benefiting plant N uptake, and the importance of soil microbiomes in promoting soil health and crop productivity. We also proposes a potential holistic (rhizosphere-root-phyllosphere) microbe-based approach to improve NUE and reduce dependence on mineral N fertilizer in agroecosystems, toward nature-based solution for nutrient management in intensive cropping systems.
|
| Keywords
nitrogen
microbiome
NUE
rhizosphere
phyllosphere
soil food web
|
|
Corresponding Author(s):
Limei ZHANG
|
| About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
|
Just Accepted Date: 08 June 2022
Online First Date: 07 July 2022
Issue Date: 09 September 2022
|
|
| 1 |
D E, Canfield A N, Glazer P G Falkowski. The evolution and future of Earth’s nitrogen cycle. Science , 2010, 330( 6001): 192–196
https://doi.org/10.1126/science.1186120
pmid: 20929768
|
| 2 |
L, Philippot J M, Raaijmakers P, Lemanceau der Putten W H van. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews: Microbiology , 2013, 11( 11): 789–799
https://doi.org/10.1038/nrmicro3109
pmid: 24056930
|
| 3 |
M M M, Kuypers H K, Marchant B Kartal. The microbial nitrogen-cycling network. Nature Reviews: Microbiology , 2018, 16( 5): 263–276
https://doi.org/10.1038/nrmicro.2018.9
pmid: 29398704
|
| 4 |
Z, Cui H, Zhang X, Chen C, Zhang W, Ma C, Huang W, Zhang G, Mi Y, Miao X, Li Q, Gao J, Yang Z, Wang Y, Ye S, Guo J, Lu J, Huang S, Lv Y, Sun Y, Liu X, Peng J, Ren S, Li X, Deng X, Shi Q, Zhang Z, Yang L, Tang C, Wei L, Jia J, Zhang M, He Y, Tong Q, Tang X, Zhong Z, Liu N, Cao C, Kou H, Ying Y, Yin X, Jiao Q, Zhang M, Fan R, Jiang F, Zhang Z Dou. Pursuing sustainable productivity with millions of smallholder farmers. Nature , 2018, 555( 7696): 363–366
https://doi.org/10.1038/nature25785
pmid: 29513654
|
| 5 |
L, Liu W, Xu X, Lu B, Zhong Y, Guo X, Lu Y, Zhao W, He S, Wang X, Zhang X, Liu P Vitousek. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America , 2022, 119( 14): e2121998119
https://doi.org/10.1073/pnas.2121998119
pmid: 35344440
|
| 6 |
F M, Martin S, Uroz D G Barker. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science , 2017, 356( 6340): eaad4501
https://doi.org/10.1126/science.aad4501
pmid: 28546156
|
| 7 |
Eck N J, van L Waltman. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics , 2010, 84( 2): 523–538
https://doi.org/10.1007/s11192-009-0146-3
pmid: 20585380
|
| 8 |
D, Coskun D T, Britto W, Shi H J Kronzucker. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants , 2017, 3( 6): 17074
https://doi.org/10.1038/nplants.2017.74
pmid: 28585561
|
| 9 |
N, Wrage G L, Velthof Beusichem M L, van O Oenema. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry , 2001, 33( 12-13): 1723–1732
https://doi.org/10.1016/S0038-0717(01)00096-7
|
| 10 |
H, Daims E V, Lebedeva P, Pjevac P, Han C, Herbold M, Albertsen N, Jehmlich M, Palatinszky J, Vierheilig A, Bulaev R H, Kirkegaard Bergen M, von T, Rattei B, Bendinger P H, Nielsen M Wagner. Complete nitrification by Nitrospira bacteria. Nature , 2015, 528( 7583): 504–509
https://doi.org/10.1038/nature16461
pmid: 26610024
|
| 11 |
Kessel M A H J, van D R, Speth M, Albertsen P H, Nielsen den Camp H J M, Op B, Kartal M S M, Jetten S Lücker. Complete nitrification by a single microorganism. Nature , 2015, 528( 7583): 555–559
https://doi.org/10.1038/nature16459
pmid: 26610025
|
| 12 |
T, Shen M, Stieglmeier J, Dai T, Urich C Schleper. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiology Letters , 2013, 344( 2): 121–129
https://doi.org/10.1111/1574-6968.12164
pmid: 23617238
|
| 13 |
K, Fan M, Delgado-Baquerizo X, Guo D, Wang Y, Wu M, Zhu W, Yu H, Yao Y G, Zhu H Chu. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome , 2019, 7( 1): 143
https://doi.org/10.1186/s40168-019-0757-8
pmid: 31672173
|
| 14 |
X, Shi H, Hu J, Wang J, He C, Zheng X, Wan Z Huang. Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biology & Biochemistry , 2018, 126 : 114–122
https://doi.org/10.1016/j.soilbio.2018.09.004
|
| 15 |
G, Zhu X, Ju J, Zhang C, Müller R M, Rees R E, Thorman R Sylvester-Bradley. Effects of the nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on gross N transformation rates and N2O emissions. Biology and Fertility of Soils , 2019, 55( 6): 603–615
https://doi.org/10.1007/s00374-019-01375-6
|
| 16 |
J, Friedl C, Scheer D W, Rowlings M T, Mumford P R Grace. The nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) reduces N2 emissions from intensively managed pastures in subtropical Australia. Soil Biology & Biochemistry , 2017, 108 : 55–64
https://doi.org/10.1016/j.soilbio.2017.01.016
|
| 17 |
W, Xia C, Zhang X, Zeng Y, Feng J, Weng X, Lin J, Zhu Z, Xiong J, Xu Z, Cai Z Jia. Autotrophic growth of nitrifying community in an agricultural soil. ISME Journal , 2011, 5( 7): 1226–1236
https://doi.org/10.1038/ismej.2011.5
pmid: 21326337
|
| 18 |
L M, Zhang H W, Hu J P, Shen J Z He. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME Journal , 2012, 6( 5): 1032–1045
https://doi.org/10.1038/ismej.2011.168
pmid: 22134644
|
| 19 |
L M, Zhang P R, Offre J Z, He D T, Verhamme G W, Nicol J I Prosser. Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107( 40): 17240–17245
https://doi.org/10.1073/pnas.1004947107
pmid: 20855593
|
| 20 |
J, Harter H M, Krause S, Schuettler R, Ruser M, Fromme T, Scholten A, Kappler S Behrens. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME Journal , 2014, 8( 3): 660–674
https://doi.org/10.1038/ismej.2013.160
pmid: 24067258
|
| 21 |
H J, Xu X H, Wang H, Li H Y, Yao J Q, Su Y G Zhu. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environmental Science & Technology , 2014, 48( 16): 9391–9399
https://doi.org/10.1021/es5021058
pmid: 25054835
|
| 22 |
Y, Zhong J, Hu Q, Xia S, Zhang X, Li X, Pan R, Zhao R, Wang W, Yan Z, Shangguan F, Hu C, Yang W Wang. Soil microbial mechanisms promoting ultrahigh rice yield. Soil Biology & Biochemistry , 2020, 143 : 107741
https://doi.org/10.1016/j.soilbio.2020.107741
|
| 23 |
D, Abalos Z, Liang P, Dörsch L Elsgaard. Trade-offs in greenhouse gas emissions across a liming-induced gradient of soil pH: role of microbial structure and functioning. Soil Biology & Biochemistry , 2020, 150 : 108006
https://doi.org/10.1016/j.soilbio.2020.108006
|
| 24 |
M, Zhang R J E, Alves D, Zhang L, Han J, He L Zhang. Time-dependent shifts in populations and activity of bacterial and archaeal ammonia oxidizers in response to liming in acidic soils. Soil Biology & Biochemistry , 2017, 112 : 77–89
https://doi.org/10.1016/j.soilbio.2017.05.001
|
| 25 |
T, Huang H, Yang C, Huang X Ju. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system. Field Crops Research , 2017, 204 : 1–11
https://doi.org/10.1016/j.fcr.2017.01.004
|
| 26 |
C, Xu X, Han S, Ru L, Cárdenas R M, Rees D, Wu W, Wu F Meng. Crop straw incorporation interacts with N fertilizer on N2O emissions in an intensively cropped farmland. Geoderma , 2019, 341 : 129–137
https://doi.org/10.1016/j.geoderma.2019.01.014
|
| 27 |
L, Xia S K, Lam B, Wolf R, Kiese D, Chen K Butterbach-Bahl. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biology , 2018, 24( 12): 5919–5932
https://doi.org/10.1111/gcb.14466
pmid: 30295405
|
| 28 |
Y Q, Wang R, Bai H J, Di L Y, Mo B, Han L M, Zhang J Z He. Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy Soils. Frontiers in Microbiology , 2018, 9 : 2566
https://doi.org/10.3389/fmicb.2018.02566
pmid: 30483220
|
| 29 |
Y, Cheng A S, Elrys A M, Merwad H, Zhang Z, Chen J, Zhang Z, Cai C Müller. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environmental Science & Technology , 2022, 56( 6): 3791–3800
https://doi.org/10.1021/acs.est.1c07997
pmid: 35226464
|
| 30 |
L, Lassaletta G, Billen B, Grizzetti J, Anglade J Garnier. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters , 2014, 9( 10): 105011
https://doi.org/10.1088/1748-9326/9/10/105011
|
| 31 |
Y, Wang C, Li Y, Kou J, Wang B, Tu H, Li X, Li C, Wang M Yao. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biology & Biochemistry , 2017, 115 : 547–555
https://doi.org/10.1016/j.soilbio.2017.09.024
|
| 32 |
W, Shi H, Zhao Y, Chen J, Wang B, Han C, Li J, Lu L Zhang. Organic manure rather than phosphorus fertilization primarily determined asymbiotic nitrogen fixation rate and the stability of diazotrophic community in an upland red soil. Agriculture, Ecosystems & Environment , 2021, 319 : 107535
https://doi.org/10.1016/j.agee.2021.107535
|
| 33 |
X, Wu Y, Liu Y, Shang D, Liu W, Liesack Z, Cui J, Peng F Zhang. Peat-vermiculite alters microbiota composition towards increased soil fertility and crop productivity. Plant and Soil , 2022, 470( 1−2): 21–34
https://doi.org/10.1007/s11104-021-04851-x
|
| 34 |
X, Wu J, Peng P, Liu Q, Bei C, Rensing Y, Li H, Yuan W, Liesack F, Zhang Z Cui. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Science of the Total Environment , 2021, 785 : 147329
https://doi.org/10.1016/j.scitotenv.2021.147329
pmid: 33940418
|
| 35 |
R, Bai Y, Fang L, Mo J, Shen L, Song Y, Wang L, Zhang J He. Greater promotion of DNRA rates and nrfA gene transcriptional activity by straw incorporation in alkaline than in acidic paddy soils. Soil Ecology Letters , 2020, 2( 4): 255–267
https://doi.org/10.1007/s42832-020-0050-6
|
| 36 |
R, Cavicchioli W J, Ripple K N, Timmis F, Azam L R, Bakken M, Baylis M J, Behrenfeld A, Boetius P W, Boyd A T, Classen T W, Crowther R, Danovaro C M, Foreman J, Huisman D A, Hutchins J K, Jansson D M, Karl B, Koskella Welch D B, Mark J B H, Martiny M A, Moran V J, Orphan D S, Reay J V, Remais V I, Rich B K, Singh L Y, Stein F J, Stewart M B, Sullivan Oppen M J H, van S C, Weaver E A, Webb N S Webster. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews: Microbiology , 2019, 17( 9): 569–586
https://doi.org/10.1038/s41579-019-0222-5
pmid: 31213707
|
| 37 |
G E D Oldroyd. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews: Microbiology , 2013, 11( 4): 252–263
https://doi.org/10.1038/nrmicro2990
pmid: 23493145
|
| 38 |
B, Li Y Y, Li H M, Wu F F, Zhang C J, Li X X, Li H, Lambers L Li. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 23): 6496–6501
https://doi.org/10.1073/pnas.1523580113
pmid: 27217575
|
| 39 |
B, Sun Y, Gao X, Wu H, Ma C, Zheng X, Wang H, Zhang Z, Li H Yang. The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture. Plant and Soil , 2020, 447( 1−2): 117–133
https://doi.org/10.1007/s11104-019-04110-0
|
| 40 |
H A K M, Zakir G V, Subbarao S J, Pearse S, Gopalakrishnan O, Ito T, Ishikawa N, Kawano K, Nakahara T, Yoshihashi H, Ono M Yoshida. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist , 2008, 180( 2): 442–451
https://doi.org/10.1111/j.1469-8137.2008.02576.x
pmid: 18657214
|
| 41 |
G V, Subbarao K, Nakahara M P, Hurtado H, Ono D E, Moreta A F, Salcedo A T, Yoshihashi T, Ishikawa M, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon I M, Rao C E, Lascano W L, Berry O Ito. Evidence for biological nitrification inhibition in Brachiaria pastures. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106( 41): 17302–17307
https://doi.org/10.1073/pnas.0903694106
pmid: 19805171
|
| 42 |
L, Sun Y, Lu F, Yu H J, Kronzucker W Shi. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytologist , 2016, 212( 3): 646–656
https://doi.org/10.1111/nph.14057
pmid: 27292630
|
| 43 |
C A, O′Sullivan I R P, Fillery M M, Roper R A Richards. Identification of several wheat landraces with biological nitrification inhibition capacity. Plant and Soil , 2016, 404( 1−2): 61–74
https://doi.org/10.1007/s11104-016-2822-4
|
| 44 |
J, Otaka G V, Subbarao H, Ono T Yoshihashi. Biological nitrification inhibition in maize—isolation and identification of hydrophobic inhibitors from root exudates. Biology and Fertility of Soils , 2022, 58( 3): 251–264
https://doi.org/10.1007/s00374-021-01577-x
|
| 45 |
C, Bardon F, Piola F, Bellvert F E Z, Haichar G, Comte G, Meiffren T, Pommier S, Puijalon N, Tsafack F Poly. Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites. New Phytologist , 2014, 204( 3): 620–630
https://doi.org/10.1111/nph.12944
pmid: 25059468
|
| 46 |
S, Nie H, Li X, Yang Z, Zhang B, Weng F, Huang G B, Zhu Y G Zhu. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME Journal , 2015, 9( 9): 2059–2067
https://doi.org/10.1038/ismej.2015.25
pmid: 25689022
|
| 47 |
A C, Finzi R Z, Abramoff K S, Spiller E R, Brzostek B A, Darby M A, Kramer R P Phillips. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology , 2015, 21( 5): 2082–2094
https://doi.org/10.1111/gcb.12816
pmid: 25421798
|
| 48 |
P B L, George D, Lallias S, Creer F M, Seaton J G, Kenny R M, Eccles R I, Griffiths I, Lebron B A, Emmett D A, Robinson D L Jones. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nature Communications , 2019, 10( 1): 1107
https://doi.org/10.1038/s41467-019-09031-1
pmid: 30846683
|
| 49 |
J, Zhang Y X, Liu N, Zhang B, Hu T, Jin H, Xu Y, Qin P, Yan X, Zhang X, Guo J, Hui S, Cao X, Wang C, Wang H, Wang B, Qu G, Fan L, Yuan R, Garrido-Oter C, Chu Y Bai. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology , 2019, 37( 6): 676–684
https://doi.org/10.1038/s41587-019-0104-4
pmid: 31036930
|
| 50 |
J P, Lynch C F, Strock H M, Schneider J S, Sidhu I, Ajmera T, Galindo-Castañeda S P, Klein M T Hanlon. Root anatomy and soil resource capture. Plant and Soil , 2021, 466( 1−2): 21–63
https://doi.org/10.1007/s11104-021-05010-y
|
| 51 |
Y G, Zhu C, Xiong Z, Wei Q L, Chen B, Ma S Y, Zhou J, Tan L M, Zhang H L, Cui G L Duan. Impacts of global change on the phyllosphere microbiome. New Phytologist , 2022, 234( 6): 1977–1986
https://doi.org/10.1111/nph.17928
pmid: 34921429
|
| 52 |
M, Madhaiyan T H H, Alex S T, Ngoh B, Prithiviraj L Ji. Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas . Biotechnology for Biofuels , 2015, 8(1): 222
|
| 53 |
F, Batool Y, Rehman S Hasnain. Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Frontiers in Life Science , 2016, 9( 4): 313–322
https://doi.org/10.1080/21553769.2016.1256842
|
| 54 |
V V S R, Gupta B, Zhang C R, Penton J, Yu J M Tiedje. Diazotroph diversity and nitrogen fixation in summer active perennial grasses in a mediterranean region agricultural soil. Frontiers in Molecular Biosciences , 2019, 6 : 115
https://doi.org/10.3389/fmolb.2019.00115
pmid: 31750314
|
| 55 |
M, Fürnkranz W, Wanek A, Richter G, Abell F, Rasche A Sessitsch. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME Journal , 2008, 2( 5): 561–570
https://doi.org/10.1038/ismej.2008.14
pmid: 18273066
|
| 56 |
C, Knief A, Ramette L, Francès C, Alonso-Blanco J A Vorholt. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME Journal , 2010, 4( 6): 719–728
https://doi.org/10.1038/ismej.2010.9
pmid: 20164863
|
| 57 |
C, Xiong B K, Singh J Z, He Y L, Han P P, Li L H, Wan G Z, Meng S Y, Liu J T, Wang C F, Wu A H, Ge L M Zhang. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome , 2021, 9( 1): 171
https://doi.org/10.1186/s40168-021-01118-6
pmid: 34389047
|
| 58 |
S, Bowatte P C D, Newton S, Brock P, Theobald D Luo. Bacteria on leaves: a previously unrecognised source of N2O in grazed pastures. ISME Journal , 2015, 9( 1): 265–267
https://doi.org/10.1038/ismej.2014.118
pmid: 25012902
|
| 59 |
S P, Brown M A, Grillo J C, Podowski K D Heath. Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula . Microbiome , 2020, 8(1): 139
|
| 60 |
A, Abdelfattah M, Wisniewski L, Schena A J M Tack. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environmental Microbiology , 2021, 23( 4): 2199–2214
https://doi.org/10.1111/1462-2920.15392
pmid: 33427409
|
| 61 |
H J, Di K C, Cameron R G Mclaren. Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: a review of the theory, methodologies, and limitations. Soil Research , 2000, 38( 1): 213–230
https://doi.org/10.1071/SR99005
|
| 62 |
R Bardgett. The biology of soil: a community and ecosystem approach. Cambridge: Oxford university press, 2005
|
| 63 |
M, Mooshammer W, Wanek I, Hämmerle L, Fuchslueger F, Hofhansl A, Knoltsch J, Schnecker M, Takriti M, Watzka B, Wild K M, Keiblinger S, Zechmeister-Boltenstern A Richter. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications , 2014, 5( 1): 3694
https://doi.org/10.1038/ncomms4694
pmid: 24739236
|
| 64 |
C, Nevison P, Hess C, Goodale Q,Vira J Zhu. Nitrification, denitrification, and competition for soil N: evaluation of two earth system models against observations. Ecological Applications , 2022, e2528
|
| 65 |
S, Guo W, Xiong X, Hang Z, Gao Z, Jiao H, Liu Y, Mo N, Zhang G A, Kowalchuk R, Li Q, Shen S Geisen. Protists as main indicators and determinants of plant performance. Microbiome , 2021, 9( 1): 64
https://doi.org/10.1186/s40168-021-01025-w
pmid: 33743825
|
| 66 |
C, Santi D, Bogusz C Franche. Biological nitrogen fixation in non-legume plants. Annals of Botany , 2013, 111( 5): 743–767
https://doi.org/10.1093/aob/mct048
pmid: 23478942
|
| 67 |
O, Coban Deyn G B, De der Ploeg M van. Soil microbiota as game-changers in restoration of degraded lands. Science , 2022, 375( 6584): abe0725
https://doi.org/10.1126/science.abe0725
pmid: 35239372
|
| 68 |
J, Verzeaux B, Hirel F, Dubois P J, Lea T Tétu. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: basic and agronomic aspects. Plant Science , 2017, 264 : 48–56
https://doi.org/10.1016/j.plantsci.2017.08.004
pmid: 28969802
|
| 69 |
M Parniske. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews: Microbiology , 2008, 6( 10): 763–775
https://doi.org/10.1038/nrmicro1987
pmid: 18794914
|
| 70 |
F, Lesuffleur F, Paynel M P, Bataillé Deunff E, Le J B Cliquet. Root amino acid exudation: measurement of high efflux rates of glycine and serine from six different plant species. Plant and Soil , 2007, 294( 1−2): 235–246
https://doi.org/10.1007/s11104-007-9249-x
|
| 71 |
H W, Hu J He. Manipulating the soil microbiome for improved nitrogen management. Microbiology Australia , 2018, 39( 1): 24–27
https://doi.org/10.1071/MA18007
|
| 72 |
W W, Xia J, Zhao Y, Zheng H M, Zhang J B, Zhang R R, Chen X G, Lin Z J Jia. Active soil nitrifying communities revealed by in situ transcriptomics and microcosm-based stable-isotope probing. Applied and Environmental Microbiology , 2020, 86( 23): e01807-20
https://doi.org/10.1128/AEM.01807-20
pmid: 32978127
|
| 73 |
Q L, Chen J, Ding Y G, Zhu J Z, He H W Hu. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environment International , 2020, 140 : 105766
https://doi.org/10.1016/j.envint.2020.105766
pmid: 32371308
|
| 74 |
C, Xiong Y G, Zhu J T, Wang B, Singh L L, Han J P, Shen P P, Li G B, Wang C F, Wu A H, Ge L M, Zhang J Z He. Host selection shapes crop microbiome assembly and network complexity. New Phytologist , 2021, 229( 2): 1091–1104
https://doi.org/10.1111/nph.16890
pmid: 32852792
|
| 75 |
Y, Shi M, Delgado-Baquerizo Y, Li Y, Yang Y G, Zhu J, Peñuelas H Chu. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International , 2020, 142 : 105869
https://doi.org/10.1016/j.envint.2020.105869
pmid: 32593837
|
| 76 |
Vries F T, de Groenigen J W, van E, Hoffland J Bloem. Nitrogen losses from two grassland soils with different fungal biomass. Soil Biology & Biochemistry , 2011, 43( 5): 997–1005
https://doi.org/10.1016/j.soilbio.2011.01.016
|
| 77 |
Vries F T, de M E, Liiri L, Bjornlund M A, Bowker S, Christensen H M, Setala R D Bardgett. Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change , 2012, 2( 4): 276–280
https://doi.org/10.1038/nclimate1368
|
| 78 |
L, Su T, Bai X, Qin H, Yu G, Wu Q, Zhao L Tan. Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting. Applied Soil Ecology , 2021, 166 : 103994
https://doi.org/10.1016/j.apsoil.2021.103994
|
| 79 |
B A, Hungate J C, Marks M E, Power E, Schwartz Groenigen K J, van S J, Blazewicz P, Chuckran P, Dijkstra B K, Finley M K, Firestone M, Foley A, Greenlon M, Hayer K S, Hofmockel B J, Koch M C, Mack R L, Mau S N, Miller E M, Morrissey J R, Propster A M, Purcell E, Sieradzki E P, Starr B W G, Stone C, Terrer J Pett-Ridge. The functional significance of bacterial predators. mBio , 2021, 12( 2): e00466-21
https://doi.org/10.1128/mBio.00466-21
pmid: 33906922
|
| 80 |
S J, Leroux D, Hawlena O J Schmitz. Predation risk, stoichiometric plasticity and ecosystem elemental cycling. Proceedings. Biological Sciences , 2012, 279( 1745): 4183–4191
https://doi.org/10.1098/rspb.2012.1315
pmid: 22896643
|
| 81 |
J P, Schimel J Bennett. Nitrogen mineralization: challenges of a changing paradigm. Ecology , 2004, 85( 3): 591–602
https://doi.org/10.1890/03-8002
|
| 82 |
Z B, Zhao J Z, He S, Geisen L L, Han J T, Wang J P, Shen W X, Wei Y T, Fang P P, Li L M Zhang. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome , 2019, 7( 1): 33
https://doi.org/10.1186/s40168-019-0647-0
pmid: 30813951
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|