Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (3) : 356-365    https://doi.org/10.15302/J-FASE-2022458
RESEARCH ARTICLE
SUSTAINABLE NITROGEN MANAGEMENT INDEX: DEFINITION, GLOBAL ASSESSMENT AND POTENTIAL IMPROVEMENTS
Xin ZHANG1(), Yanyu WANG1, Lena SCHULTE-UEBBING2,3, Wim DE VRIES2, Tan ZOU1, Eric A. DAVIDSON1
1. University of Maryland Center for Environmental Science, Frostburg, Maryland, 21532, USA
2. Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
3. PBL Netherlands Environmental Assessment Agency, The Hague, 2594 AV, the Netherlands
 Download: PDF(4481 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● A composite N management index is proposed to measure agriculture sustainability.

● Nitrogen management has been moving towards sustainability targets globally.

● The improvement was achieved mainly by yield increase, while Nitrogen Use Efficiency (NUE) stagnated.

● No country achieved both yield and NUE targets and spatial variation is large.

● Region-specific yield targets can be used to supplement the standard Sustainable Nitrogen Management Index (SNMI).

To represent the sustainability of nitrogen management in the Sustainable Development Goals indicator framework, this paper proposes a sustainable nitrogen management index (SNMI). This index combines the performance in N crop yield and N use efficiency (NUE), thereby accounting for the need for both food production and environmental protection. Applying SNMI to countries around the world, the results showed improvement in the overall sustainability of crop N management over the past four decades, but this improvement has been mainly achieved by crop yield increase, while global NUE has improved only slightly. SNMI values vary largely among countries, and this variation has increased since the 1970s, implying different levels of success, even failure, in improving N management for countries around the world. In the standard SNMI assessment, the reference NUE was defined as 1.0 (considered an ideal NUE) and the reference yield was defined as 90 kg·ha−1·yr−1 N (considering a globally averaged yield target for meeting food demand in 2050). A sensitivity test that replaced the reference NUE of 1.0 with more realistic NUE targets of 0.8 or 0.9 showed overall reduction in SNMI values (i.e., improved performance), but little change in the ranking among countries. In another test that replaced the universal reference yield with region-specific attainable yield, SNMI values declined (i.e., improved performance) for most countries in Africa and West Asia, whereas they increased for many countries in Europe and South America. The index can be improved by further investigation of approaches for setting region-specific yield targets and high-quality data on crop yield potentials. Overall, SNMI offers promise for a simple and transparent approach to assess progress of countries toward sustainable N management with a single indicator.

Keywords global assessment      indicator      nitrogen management      sustainable agriculture      sustainable development goals     
Corresponding Author(s): Xin ZHANG   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 11 August 2022    Issue Date: 09 September 2022
 Cite this article:   
Xin ZHANG,Yanyu WANG,Lena SCHULTE-UEBBING, et al. SUSTAINABLE NITROGEN MANAGEMENT INDEX: DEFINITION, GLOBAL ASSESSMENT AND POTENTIAL IMPROVEMENTS[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 356-365.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2022458
https://academic.hep.com.cn/fase/EN/Y2022/V9/I3/356
1 J W, Erisman M A, Sutton J, Galloway Z, Klimont W Winiwarter. How a century of ammonia synthesis changed the world. Nature Geoscience , 2008, 1( 10): 636–639
https://doi.org/10.1038/ngeo325
2 J W, Erisman J N, Galloway S, Seitzinger A, Bleeker N B, Dise A M, Petrescu A M, Leach Vries W de. Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences , 2013, 368( 1621): 20130116
https://doi.org/10.1098/rstb.2013.0116 pmid: 23713116
3 X, Zhang E A, Davidson T, Zou L, Lassaletta Z, Quan T, Li W Zhang. Quantifying nutrient budgets for sustainable nutrient management. Global Biogeochemical Cycles , 2020, 34( 3): 1–25
https://doi.org/10.1029/2018GB006060
4 W, Steffen K, Richardson J, Rockström S E, Cornell I, Fetzer E M, Bennett R, Biggs S R, Carpenter Vries W, de Wit C A, de C, Folke D, Gerten J, Heinke G M, Mace L M, Persson V, Ramanathan B, Reyers S Sörlin. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science , 2015, 347( 6223): 1259855
https://doi.org/10.1126/science.1259855 pmid: 25592418
5 Vries W, De J, Kros C, Kroeze S P Seitzinger. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Current Opinion in Environmental Sustainability , 2013, 5( 3–4): 392–402
https://doi.org/10.1016/j.cosust.2013.07.004
6 Nations (UN) United. Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development. UN , 2022. Available at UN website on November 20, 2021
7 and Agricultural Organizations of United Nations (FAO) Food. Proportion of Agricultural Area under Productive and Sustainable Agriculture. Rome: FAO , 2019
8 Nations (UN) United. SDG indicator metadata. UN , 2021. Available at UN website on November 20, 2021
9 J D, Sachs G, Schmidt-Traub C, Kroll D, Durand-Delacre K Teksoz. An SDG Index and Dashboards—Global Report. New York: Bertelsmann Stiftung and Sustainable Development Solutions Network (SDSN) , 2016
10 Z A, Wendling J W, Emerson Sherbinin A, de D C, Esty K, Hoving C D, Ospina J M, Murray L, Gunn M, Ferrato M, Schreck M, Jacob N, Dahl A, Gordron N, Dahl E, Dorobek S, Handoko T, Chai-Onn J, Mills Q, Liu H, Feldman K, Sierks R, Chang B, Madridejos A, Ballesteros-Figueroa Q, Chen G, Chase M, Slattery N, Appleby D Schulman. Environmental Performance Index 2020. New Haven, CT: Yale Center for Environmental Law & Policy , 2020
11 Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Intergovernmental. Core indicators. Bonn: IPBES , 2012. Available at IPBES website on February 25, 2022
12 Resources Institute (WRI) World. Data Set: Indicators of Sustainable Agriculture: A Scoping Analysis. Washington, D.C.: WRI , 2014. Available at WRI website on June 25, 2014
13 J D, Sachs G, Lafortune C, Kroll G, Fuller F Woelm. Sustainable Development Report. Cambridge: Cambridge University Press , 2021
14 G, Schmidt-Traub C, Kroll K, Teksoz D, Durand-Delacre J D Sachs. National baselines for the Sustainable Development Goals assessed in the SDG Index and Dashboards. Nature Geoscience , 2017, 10( 8): 547–555
https://doi.org/10.1038/ngeo2985
15 X, Zhang E A, Davidson D L, Mauzerall T D, Searchinger P, Dumas Y Shen. Managing nitrogen for sustainable development. Nature , 2015, 528( 7580): 51–59
https://doi.org/10.1038/nature15743 pmid: 26595273
16 X, Zhang G, Yao S, Vishwakarma C, Dalin A M, Komarek D R, Kanter K F, Davis K, Pfeifer J, Zhao T, Zou P, D’Odorico C, Folberth F G, Rodriguez J, Fanzo L, Rosa W, Dennison M, Musumba A, Heyman E A Davidson. Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth , 2021, 4( 9): 1262–1277
https://doi.org/10.1016/j.oneear.2021.08.015
17 X, Zhang T, Zou L, Lassaletta N D, Mueller F N, Tubiello M D, Lisk C, Lu R T, Conant C D, Dorich J, Gerber H, Tian T, Bruulsema T M, Maaz K, Nishina B L, Bodirsky A, Popp L, Bouwman A, Beusen J, Chang P, Havlík D, Leclère J G, Canadell R B, Jackson P, Heffer N, Wanner W, Zhang E A Davidson. Quantification of global and national nitrogen budgets for crop production. Nature Food , 2021, 2( 7): 529–540
https://doi.org/10.1038/s43016-021-00318-5
18 and Agricultural Organization of the United Nations (FAO) Food. Soil Nutrient Budget. Rome: FAO , 2021. Available at FAO website on November 24, 2021
19 N, Alexandratos J Bruinsma. World Agriculture towards 2030/2050: the 2012 Revision. ESA Working Paper No. 12–03. Rome: FAO , 2012
20 X, Zhang D L, Mauzerall E A, Davidson D R, Kanter R Cai. The economic and environmental consequences of implementing nitrogen-efficient technologies and management practices in agriculture. Journal of Environmental Quality , 2015, 44( 2): 312–324
https://doi.org/10.2134/jeq2014.03.0129 pmid: 26023951
21 A, Dobermann T, Bruulsema I, Cakmak B, Gerard K, Majumdar M, McLaughlin P, Reidsma B, Vanlauwe L, Wollenberg F, Zhang X Zhang. Responsible plant nutrition: a new paradigm to support food system transformation. Global Food Security , 2022, 33 : 100636
https://doi.org/10.1016/j.gfs.2022.100636
22 X Zhang. Biogeochemistry: a plan for efficient use of nitrogen fertilizers. Nature , 2017, 543( 7645): 322–323
https://doi.org/10.1038/543322a pmid: 28300099
23 G, Yao X, Zhang E A, Davidson F Taheripour. The increasing global environmental consequences of a weakening US–China crop trade relationship. Nature Food , 2021, 2( 8): 578–586
https://doi.org/10.1038/s43016-021-00338-1
24 Nitrogen Expert Panel EU. Nitrogen Use Efficiency (NUE)—an indicator for the utilization of nitrogen in agriculture and food systems. Wageningen: Wageningen University , 2015
25 Ittersum M K, Van K G, Cassman P, Grassini J, Wolf P, Tittonell Z Hochman. Yield gap analysis with local to global relevance—A review. Field Crops Research , 2013, 143 : 4–17
https://doi.org/10.1016/j.fcr.2012.09.009
26 N D, Mueller J S, Gerber M, Johnston D K, Ray N, Ramankutty J A Foley. Closing yield gaps through nutrient and water management. Nature , 2012, 490( 7419): 254–257
https://doi.org/10.1038/nature11420 pmid: 22932270
27 M, Ollenburger P, Kyle X Zhang. Uncertainties in estimating global potential yields and their impacts for long-term agro-economic modeling. Food Security , 2022 [Published Online]
28 and Agricultural Organizations of United Nations (FAO) Food. The future of food and agriculture—Alternative pathways to 2050. Rome: FAO , 2018
29 D B, Lobell K G, Cassman C B Field. Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources , 2009, 34( 1): 179–204
https://doi.org/10.1146/annurev.environ.041008.093740
30 L, Lassaletta G, Billen B, Grizzetti J, Anglade J Garnier. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environmental Research Letters , 2014, 9( 10): 105011
https://doi.org/10.1088/1748-9326/9/10/105011
31 Z A, Wendling J W, Emerson D C, Esty M A, Levy Sherbinin A, de N R, Spiegel V, Pinkerton R, Boucher S, Ratté S, Mardell M, Ichihara J, Battles A N, Quay S, Kim E, Khusainova J, Gao S, Ezroni W, Jiang M, Jaiteh T, Chai-Onn R, Muydinov E, Kim R, Water G J, Moss M, Gianakos G, Chase J, Corum D C, Warren M, Slattery M, Garrett M, Ivanova N, Escobar-Pemberthy S, Wood V Reis. 2018 Environmental Performance Index. New Haven, CT: Yale Center for Environmental Law & Policy, 2018
32 E, Stehfest Vuuren D P, van T, Kram A F, Bouwman R, Alkemade M, Bakkenes H, Biemans A, Bouwman Elzen M G J, den J H, Janse P L, Lucas Minnen J, van M, Müller A G Prins. Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model description and policy applications. The Hague: PBL Netherlands Environmental Assessment Agency, 2014
33 L, Schulte-Uebbing A, Beusen A, Bouwman Vries W de. From planetary to regional boundaries for agricultural nitrogen pollution. Research Square , 2022 [Preprint]
https://doi.org/doi: 10.21203/rs.3.rs-149125/v1
34 E, Sinha K V, Calvin P G, Kyle M I, Hejazi S T, Waldhoff M, Huang S, Vishwakarma X Zhang. Implication of imposing fertilizer limitations on energy, agriculture, and land systems. Journal of Environmental Management , 2022, 305 : 114391
https://doi.org/10.1016/j.jenvman.2021.114391 pmid: 34991029
35 Yield Gap Atlas (GYGA) Global. Coverage and data download. GYGA , 2022. Available at GYGA website on January 13, 2022
36 P, Grassini Bussel L G J, van Wart J, Van J, Wolf L, Claessens H, Yang H, Boogaard Groot H, de Ittersum M K, van K G Cassman. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research , 2015, 177 : 49–63
https://doi.org/10.1016/j.fcr.2015.03.004
37 Bussel L G J, van P, Grassini Wart J, Van J, Wolf L, Claessens H, Yang H, Boogaard Groot H, de K, Saito K G, Cassman Ittersum M K van. From field to atlas: Upscaling of location-specific yield gap estimates. Field Crops Research , 2015, 177 : 98–108
https://doi.org/10.1016/j.fcr.2015.03.005
[1] FASE-22458-OF-ZX_suppl_1 Download
[1] Xiaoxia GUO, Chong WANG, Fusuo ZHANG. CONSTRUCTION OF AN INDEX SYSTEM FOR SUSTAINABILITY ASSESSMENT IN SMALLHOLDER FARMING SYSTEMS[J]. Front. Agr. Sci. Eng. , 2022, 9(4): 511-522.
[2] Wen-Feng CONG, Chaochun ZHANG, Chunjie LI, Guangzhou WANG, Fusuo ZHANG. DESIGNING DIVERSIFIED CROPPING SYSTEMS IN CHINA: THEORY, APPROACHES AND IMPLEMENTATION[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 362-372.
[3] Hao YANG, Weiping ZHANG, Long LI. INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 373-386.
[4] Wopke VAN DER WERF, Lizhen ZHANG, Chunjie LI, Ping CHEN, Chen FENG, Zhan XU, Chaochun ZHANG, Chunfeng GU, Lammert BASTIAANS, David MAKOWSKI, TjeerdJan STOMPH. COMPARING PERFORMANCE OF CROP SPECIES MIXTURES AND PURE STANDS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 481-489.
[5] Xiaoqiang JIAO, Derara Sori FEYISA, Jasper KANOMANYANGA, Ngula David MUTTENDANGO, Shingirai MUDARE, Amadou NDIAYE, Bilisuma KABETO, Felix Dapare DAKORA, Fusuo ZHANG. Science and Technology Backyard model: implications for sustainable agriculture in Africa[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 390-400.
[6] Giulia BONGIORNO. Novel soil quality indicators for the evaluation of agricultural management practices: a biological perspective[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 257-274.
[7] Qiaofang LU, Tongtong LIU, Nanqi WANG, Zhechao DOU, Kunguang WANG, Yuanmei ZUO. A review of soil nematodes as biological indicators for the assessment of soil health[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 275-281.
[8] Enli WANG, Di HE, Zhigan ZHAO, Chris J. SMITH, Ben C. T. MACDONALD. Using a systems modeling approach to improve soil management and soil quality[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 289-295.
[9] Leslie G. FIRBANK. Towards the sustainable intensification of agriculture—a systems approach to policy formulation[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 81-89.
[10] Zhenling CUI, Zhengxia DOU, Hao YING, Fusuo ZHANG. Producing more with less: reducing environmental impacts through an integrated soil-crop system management approach[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 14-20.
[11] Yuxin MIAO, David J. MULLA, Pierre C. ROBERT. An integrated approach to site-specific management zone delineation[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 432-441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed