Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (3) : 475-489    https://doi.org/10.15302/J-FASE-2022459
REVIEW
PROGRESS ON IMPROVING AGRICULTURAL NITROGEN USE EFFICIENCY: UK-CHINA VIRTUAL JOINT CENTERS ON NITROGEN AGRONOM
Tom MISSELBROOK1(), Zhaohai BAI2, Zejiang CAI3, Weidong CAO4, Alison CARSWELL1, Nicholas COWAN5, Zhenling CUI6, David CHADWICK7, Bridget EMMETT8, Keith GOULDING9, Rui JIANG10, Davey JONES7, Xiaotang JU6, Hongbin LIU11, Yuelai LU12, Lin MA2, David POWLSON9, Robert M. REES13, Ute SKIBA5, Pete SMITH14, Roger SYLVESTER-BRADLEY15, John WILLIAMS15, Lianhai WU1, Minggang XU11, Wen XU6, Fusuo ZHANG6, Junling ZHANG6, Jianbin ZHOU10, Xuejun LIU6
1. Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
2. Center for Agricultural Resources Research, the Chinese Academy of Sciences, Shijiazhuang 050021, China
3. Qiyang Agro-ecosystem of National Field Experimental Station, Yongzhou 426182, China
4. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
5. UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
6. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
7. School of Environment, Natural Resources and Geography, Bangor University, Bangor LL57 2UW, UK
8. UK Centre for Ecology and Hydrology, Bangor LL57 2UW, UK
9. Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
10. College of Resources and Environment, Northwest A&F University, Yangling 712100, China
11. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
12. School of International Development, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
13. Scotland’s Rural College (SRUC), West Mains Road, Edinburgh, EH9 3JG, UK
14. Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
15. ADAS Boxworth, Battlegate Road, Boxworth, Cambridge CB23 4NN, UK
 Download: PDF(2235 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Virtual joint centers on N agronomy were established between UK and China.

● Key themes were improving NUE for fertilizers, utilizing livestock manures, and soil health.

● Improved management practices and technologies were identified and assessed.

● Fertilizer emissions and improved manure management are key targets for mitigation.

Two virtual joint centers for nitrogen agronomy were established between the UK and China to facilitate collaborative research aimed at improving nitrogen use efficiency (NUE) in agricultural production systems and reducing losses of reactive N to the environment. Major focus areas were improving fertilizer NUE, use of livestock manures, soil health, and policy development and knowledge exchange. Improvements to fertilizer NUE included attention to application rate in the context of yield potential and economic considerations and the potential of improved practices including enhanced efficiency fertilizers, plastic film mulching and cropping design. Improved utilization of livestock manures requires knowledge of the available nutrient content, appropriate manure processing technologies and integrated nutrient management practices. Soil carbon, acidification and biodiversity were considered as important aspects of soil health. Both centers identified a range of potential actions that could be taken to improve N management, and the research conducted has highlighted the importance of developing a systems-level approach to assessing improvement in the overall efficiency of N management and avoiding unintended secondary effects from individual interventions. Within this context, the management of fertilizer emissions and livestock manure at the farm and regional scales appear to be particularly important targets for mitigation.

Keywords CINAg      N-CIRCLE      nitrogen use efficiency      reactive nitrogen      sustainable production     
Corresponding Author(s): Tom MISSELBROOK   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Just Accepted Date: 13 July 2022   Online First Date: 09 August 2022    Issue Date: 09 September 2022
 Cite this article:   
Tom MISSELBROOK,Zhaohai BAI,Zejiang CAI, et al. PROGRESS ON IMPROVING AGRICULTURAL NITROGEN USE EFFICIENCY: UK-CHINA VIRTUAL JOINT CENTERS ON NITROGEN AGRONOM[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 475-489.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2022459
https://academic.hep.com.cn/fase/EN/Y2022/V9/I3/475
Fig.1  Fertilizer N use (actual input) in China from 1950 compared with the estimated fertilizer N input required to meet food demand assuming an achievable nitrogen use efficiency throughout the food chain of 0.16 (required input) and the critical input in terms of environmental N loading whereby the N surplus meets environmental protection targets for air and water (unpublished data)
Function Biological Chemical Physical
N cycling processes Readily oxidizable C Biological community Microbial biomass C, N & P N quantity and type Soil organic matter pH Available P Hydraulic properties Bulk density Texture Aggregate stability
Yield
Gaseous N losses
N leaching
Resilience
Water retention
C sequestration
Tab.1  Framework for development of potential metrics for indicators of soil functions relevant to NUE
1 C Larson. Climate change. Losing arable land, China faces stark choice: adapt or go hungry. Science , 2013, 339( 6120): 644–645
https://doi.org/10.1126/science.339.6120.644 pmid: 23393241
2 X, Chen L, Ma W, Ma Z, Wu Z, Cui Y, Hou F Zhang. What has caused the use of fertilizers to skyrocket in China. Nutrient Cycling in Agroecosystems , 2018, 110( 2): 241–255
https://doi.org/10.1007/s10705-017-9895-1
3 J H, Guo X J, Liu Y, Zhang J L, Shen W X, Han W F, Zhang P, Christie K W T, Goulding P M, Vitousek F S Zhang. Significant acidification in major Chinese croplands. Science , 2010, 327( 5968): 1008–1010
https://doi.org/10.1126/science.1182570 pmid: 20150447
4 X, Liu Y, Zhang W, Han A, Tang J, Shen Z, Cui P, Vitousek J W, Erisman K, Goulding P, Christie A, Fangmeier F Zhang. Enhanced nitrogen deposition over China. Nature , 2013, 494( 7438): 459–462
https://doi.org/10.1038/nature11917 pmid: 23426264
5 X T, Ju G X, Xing X P, Chen S L, Zhang L J, Zhang X J, Liu Z L, Cui B, Yin P, Christie Z L, Zhu F S Zhang. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106( 9): 3041–3046
https://doi.org/10.1073/pnas.0813417106 pmid: 19223587
6 C, Yu X, Huang H, Chen H C J, Godfray J S, Wright J W, Hall P, Gong S, Ni S, Qiao G, Huang Y, Xiao J, Zhang Z, Feng X, Ju P, Ciais N C, Stenseth D O, Hessen Z, Sun L, Yu W, Cai H, Fu X, Huang C, Zhang H, Liu J Taylor. Managing nitrogen to restore water quality in China. Nature , 2019, 567( 7749): 516–520
https://doi.org/10.1038/s41586-019-1001-1 pmid: 30818324
7 X, Chen Z, Cui M, Fan P, Vitousek M, Zhao W, Ma Z, Wang W, Zhang X, Yan J, Yang X, Deng Q, Gao Q, Zhang S, Guo J, Ren S, Li Y, Ye Z, Wang J, Huang Q, Tang Y, Sun X, Peng J, Zhang M, He Y, Zhu J, Xue G, Wang L, Wu N, An L, Wu L, Ma W, Zhang F Zhang. Producing more grain with lower environmental costs. Nature , 2014, 514( 7523): 486–489
https://doi.org/10.1038/nature13609 pmid: 25186728
8 D, Norse X Ju. Environmental costs of China’s food security. Agriculture, Ecosystems & Environment , 2015, 209 : 5–14
https://doi.org/10.1016/j.agee.2015.02.014
9 X, Ju B, Gu Y, Wu J N Galloway. Reducing China’s fertilizer use by increasing farm size. Global Environmental Change , 2016, 41 : 26–32
https://doi.org/10.1016/j.gloenvcha.2016.08.005
10 D, Zhang H, Wang J, Pan J, Luo J, Liu B, Gu S, Liu L, Zhai S, Limdsey Y, Zhang Q, Lei S, Wu P, Smith H Liu. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agriculture, Ecosystems & Environment , 2018, 265 : 8–14
https://doi.org/10.1016/j.agee.2018.05.023
11 X, Song M, Liu X, Ju B, Gao F, Su X, Chen R M Rees. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain. Environmental Science & Technology , 2018, 52( 21): 12504–12513
https://doi.org/10.1021/acs.est.8b03931 pmid: 30351044
12 J K, Ladha H, Pathak T J, Krupnik J, Six Kessel C van. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy , 2005, 87 : 85–156
https://doi.org/10.1016/S0065-2113(05)87003-8
13 Z, Quan X, Zhang Y, Fang E A Davidson. Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages. Nature Food , 2021, 2( 4): 241–245
https://doi.org/10.1038/s43016-021-00263-3
14 C, Zhang X, Ju D, Powlson O, Oenema P Smith. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environmental Science & Technology , 2019, 53( 12): 6678–6687
https://doi.org/10.1021/acs.est.8b06383 pmid: 31125212
15 Nitrogen Expert Panel EU. Nitrogen use efficiency (NUE)— An indicator for the utilization of nitrogen in agriculture and food systems. Wageningen: Wageningen University , 2015
16 R, Sylvester-Bradley D R Kindred. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany , 2009, 60( 7): 1939–1951
https://doi.org/10.1093/jxb/erp116 pmid: 19395389
17 S M, Swarbreck M, Wang Y, Wang D, Kindred R, Sylvester-Bradley W, Shi , Varinderpal-Singh A R, Bentley H Griffiths. A Roadmap for lowering crop nitrogen requirement. Trends in Plant Science , 2019, 24( 10): 892–904
https://doi.org/10.1016/j.tplants.2019.06.006 pmid: 31285127
18 and Horticulture Development Board (AHDB) Agriculture. How best to respond to costly fertiliser nitrogen for use in 2022. AHDB Research Review No. 97. AHDB, 2021. Available at AHDB website on July 8, 2022
19 T, Li W, Zhang J, Yin D, Chadwick D, Norse Y, Lu X, Liu X, Chen F, Zhang D, Powlson Z Dou. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Global Change Biology , 2018, 24( 2): e511–e521
https://doi.org/10.1111/gcb.13918 pmid: 28973790
20 D, Abalos S, Jeffery A, Sanz-Cobena G, Guardia A Vallejo. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems & Environment , 2014, 189 : 136–144
https://doi.org/10.1016/j.agee.2014.03.036
21 X, Lyu T, Wang X, Song C, Zhao R M, Rees Z, Liu J, Xiaotang K H M Siddique. Reducing N2O emissions with enhanced efficiency nitrogen fertilizers (EENFs) in a high-yielding spring maize system. Environmental Pollution , 2021, 273 : 116422
https://doi.org/10.1016/j.envpol.2020.116422 pmid: 33445127
22 Z, Sha X, Ma J, Wang T, Lv Q, Li T, Misselbrook X Liu. Effect of N stabilizers on fertilizer-N fate in the soil-crop system: a meta-analysis. Agriculture, Ecosystems & Environment , 2020, 290 : 106763
https://doi.org/10.1016/j.agee.2019.106763
23 Z, Sha X, Ma N, Loick T, Lv L M, Cardenas Y, Ma X, Liu T Misselbrook. Nitrogen stabilizers mitigate reactive N and greenhouse gas emissions from an arable soil in North China Plain: field and laboratory investigation. Journal of Cleaner Production , 2020, 258 : 121025
https://doi.org/10.1016/j.jclepro.2020.121025
24 Z, Sha T, Lv M, Staal X, Ma Z, Wen Q, Li G, Pasda T, Misselbrook X Liu. Effect of combining urea fertilizer with P and K fertilizers on the efficacy of urease inhibitors under different storage conditions. Journal of Soils and Sediments , 2020, 20( 4): 2130–2140
https://doi.org/10.1007/s11368-019-02534-w
25 A, Carswell R, Shaw J, Hunt A R, Sanchez-Rodriguez K, Saunders J, Cotton P W, Hill D R, Chadwick D L, Jones T H Misselbrook. Assessing the benefits and wider costs of different N fertilisers for grassland agriculture. Archives of Agronomy and Soil Science , 2019, 65( 5): 625–639
https://doi.org/10.1080/03650340.2018.1519251
26 N, Cowan P, Levy J, Drewer A, Carswell R, Shaw I, Simmons C, Bache J, Marinheiro J, Brichet A R, Sanchez-Rodriguez J, Cotton P W, Hill D R, Chadwick D L, Jones T H, Misselbrook U Skiba. Application of Bayesian statistics to estimate nitrous oxide emission factors of three nitrogen fertilisers on UK grasslands. Environment International , 2019, 128 : 362–370
https://doi.org/10.1016/j.envint.2019.04.054 pmid: 31078005
27 G, Zhu X, Ju J, Zhang C, Müller R M, Rees R E, Thorman R Sylvester-Bradley. Effects of the nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on gross N transformation rates and N2O emissions. Biology and Fertility of Soils , 2019, 55( 6): 603–615
https://doi.org/10.1007/s00374-019-01375-6
28 Q, Fu M, Abadie A, Blaud A, Carswell T H, Misselbrook I M, Clark P R Hirsch. Effects of urease and nitrification inhibitors on soil N, nitrifier abundance and activity in a sandy loam soil. Biology and Fertility of Soils , 2020, 56( 2): 185–194
https://doi.org/10.1007/s00374-019-01411-5 pmid: 32038053
29 A, Vallejo L, García-Torres J A, Díez A, Arce S López-Fernández. Comparison of N losses (NO3−, N2O, NO) from surface applied, injected or amended (DCD) pig slurry of an irrigated soil in a Mediterranean climate. Plant and Soil , 2005, 272( 1–2): 313–325
https://doi.org/10.1007/s11104-004-5754-3
30 A R, Sánchez-Rodríguez A M, Carswell R, Shaw J, Hunt K, Saunders J, Cotton D R, Chadwick D L, Jones T H Misselbrook. Advanced processing of food waste based digestate for mitigating nitrogen losses in a winter wheat crop. Frontiers in Sustainable Food Systems , 2018, 2 : 35
https://doi.org/10.3389/fsufs.2018.00035
31 D, Ma L, Chen H, Qu Y, Wang T, Misselbrook R Jiang. Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: a meta-analysis. Agricultural Water Management , 2018, 202 : 166–173
https://doi.org/10.1016/j.agwat.2018.02.001 pmid: 29651195
32 R, Jiang X, Li W, Zhu K, Wang S, Guo T, Misselbrook R Hatano. Effects of the ridge mulched system on soil water and inorganic nitrogen distribution in the Loess Plateau of China. Agricultural Water Management , 2018, 203 : 277–288
https://doi.org/10.1016/j.agwat.2018.03.027 pmid: 29881138
33 S, Guo R, Jiang H, Qu Y, Wang T, Misselbrook A, Gunina Y Kuzyakov. Fate and transport of urea-N in a rain-fed ridge-furrow crop system with plastic mulch. Soil & Tillage Research , 2019, 186 : 214–223
https://doi.org/10.1016/j.still.2018.10.022 pmid: 31007318
34 Z H Zhang. Transformation process of soil nitrogen in ridge-furrow maize system with plastic mulch and regulation of N fertilizer. Dissertation for the Master’s Degree. Yangling, China: Northwest A&F University, 2021 ( in Chinese)
35 C, Zhang R M, Rees X Ju. Cropping system design can improve nitrogen use efficiency in intensively managed agriculture. Environmental Pollution , 2021, 280 : 116967
https://doi.org/10.1016/j.envpol.2021.116967 pmid: 33799128
36 G, Zhou W, Cao J, Bai C, Xu N, Zeng S, Gao R M Rees. Non-additive responses of soil C and N to rice straw and hairy vetch (Vicia villosa Roth L.) mixtures in a paddy soil. Plant and Soil , 2019, 436( 1–2): 229–244
https://doi.org/10.1007/s11104-018-03926-6
37 X, Zhou Y, Liao Y, Lu R M, Rees W, Cao J, Nie M Li. Management of rice straw with relay cropping of Chinese milk vetch improved double-rice cropping system production in southern China. Journal of Integrative Agriculture , 2020, 19( 8): 2103–2115
https://doi.org/10.1016/S2095-3119(20)63206-3
38 L, Yang J, Bai N, Zeng X, Zhou Y, Liao Y, Lu R M, Rees J, Nie W Cao. Diazotroph abundance and community structure are reshaped by straw return and mineral fertilizer in rice-rice-green manure rotation. Applied Soil Ecology , 2019, 136 : 11–20
https://doi.org/10.1016/j.apsoil.2018.12.015
39 S, Gao G, Zhou R M, Rees W Cao. Green manuring inhibits nitrification in a typical paddy soil by changing the contributions of ammonia-oxidizing archaea and bacteria. Applied Soil Ecology , 2020, 156 : 103698
https://doi.org/10.1016/j.apsoil.2020.103698
40 L, Wu T H, Misselbrook L, Feng L Wu. Assessment of nitrogen uptake and biological nitrogen fixation responses of soybean to nitrogen fertilizer with the SPACSYS. Sustainability , 2020, 12( 15): 5921
https://doi.org/10.3390/su12155921
41 Z, Cui H, Zhang X, Chen C, Zhang W, Ma C, Huang W, Zhang G, Mi Y, Miao X, Li Q, Gao J, Yang Z, Wang Y, Ye S, Guo J, Lu J, Huang S, Lv Y, Sun Y, Liu X, Peng J, Ren S, Li X, Deng X, Shi Q, Zhang Z, Yang L, Tang C, Wei L, Jia J, Zhang M, He Y, Tong Q, Tang X, Zhong Z, Liu N, Cao C, Kou H, Ying Y, Yin X, Jiao Q, Zhang M, Fan R, Jiang F, Zhang Z Dou. Pursuing sustainable productivity with millions of smallholder farmers. Nature , 2018, 555( 7696): 363–366
https://doi.org/10.1038/nature25785 pmid: 29513654
42 R J, Orr P J, Murray C J, Eyles M S A, Blackwell L M, Cardenas A L, Collins J A J, Dungait K W T, Goulding B A, Griffith S J, Gurr P, Harris J M B, Hawkins T H, Misselbrook C, Rawlings A, Shepherd H, Sint T, Takahashi K N, Tozer A P, Whitmore L, Wu M R F Lee. The North Wyke Farm Platform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics. European Journal of Soil Science , 2016, 67( 4): 374–385
https://doi.org/10.1111/ejss.12350 pmid: 27867310
43 A M, Carswell K, Gongadze T H, Misselbrook L Wu. Impact of transition from permanent pasture to new swards on the nitrogen use efficiency, nitrogen and carbon budgets of beef and sheep production. Agriculture, Ecosystems & Environment , 2019, 283 : 106572
https://doi.org/10.1016/j.agee.2019.106572 pmid: 31680709
44 B, Loubet S, Génermont R, Ferrara C, Bedos C, Decuq E, Personne O, Fanucci B, Durand G, Rana P Cellier. An inverse model to estimate ammonia emissions from fields. European Journal of Soil Science , 2010, 61( 5): 793–805
https://doi.org/10.1111/j.1365-2389.2010.01268.x
45 N, Cowan P, Levy A, Moring I, Simmons C, Bache A, Stephens J, Marinheiro J, Brichet L, Song A, Pickard C, McNeill R, McDonald J, Maire B, Loubet P, Voylokov M, Sutton U Skiba. Nitrogen use efficiency and N2O and NH3 losses attributed to three fertiliser types applied to an intensively managed silage crop. Biogeosciences , 2019, 16( 23): 4731–4745
https://doi.org/10.5194/bg-16-4731-2019
46 N, Cowan P, Levy J, Maire M, Coyle S R, Leeson D, Famulari M, Carozzi E, Nemitz U Skiba. An evaluation of four years of nitrous oxide fluxes after application of ammonium nitrate and urea fertilisers measured using the eddy covariance method. Agricultural and Forest Meteorology , 2020, 280 : 107812
https://doi.org/10.1016/j.agrformet.2019.107812
47 N, Cowan E, Carnell U, Skiba U, Dragosits J, Drewer P Levy. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: a Bayesian analysis of 20 years of experimental data. Environment International , 2020, 135 : 105366
https://doi.org/10.1016/j.envint.2019.105366 pmid: 31862638
48 D, Chadwick W, Jia Y, Tong G, Yu Q, Shen Q Chen. Improving manure nutrient management towards sustainable agricultural intensification in China. Agriculture, Ecosystems & Environment , 2015, 209 : 34–46
https://doi.org/10.1016/j.agee.2015.03.025
49 Z, Bai L, Ma S, Jin W, Ma G L, Velthof O, Oenema L, Liu D, Chadwick F Zhang. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environmental Science & Technology , 2016, 50( 24): 13409–13418
https://doi.org/10.1021/acs.est.6b03348 pmid: 27993054
50 D R, Chadwick J R, Williams Y, Lu L, Ma Z, Bai Y, Hou X, Chen T H Misselbrook. Strategies to reduce nutrient pollution from manure management in China. Frontiers of Agricultural Science and Engineering , 2020, 7( 1): 45–55
https://doi.org/10.15302/J-FASE-2019293
51 Z, Bai X, Li J, Lu X, Wang G L, Velthof D, Chadwick J, Luo S, Ledgard Z, Wu S, Jin O, Oenema L, Ma C Hu. Livestock housing and manure storage need to be improved in China. Environmental Science & Technology , 2017, 51( 15): 8212–8214
https://doi.org/10.1021/acs.est.7b02672 pmid: 28731333
52 Z, Liu X, Wang F, Wang Z, Bai D, Chadwick T, Misselbrook L Ma. The progress of composting technologies from static heap to intelligent reactor: benefits and limitations. Journal of Cleaner Production , 2020, 270 : 122328
https://doi.org/10.1016/j.jclepro.2020.122328
53 Y, Cao X, Wang Z, Bai D, Chadwick T, Misselbrook S, Sommer W, Qin L Ma. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: a meta-analysis. Journal of Cleaner Production , 2019, 235 : 626–635
https://doi.org/10.1016/j.jclepro.2019.06.288
54 Y, Cao X, Wang L, Liu G L, Velthof T, Misselbrook Z, Bai L Ma. Acidification of manure reduces gaseous emissions and nutrient losses from subsequent composting process. Journal of Environmental Management , 2020, 264 : 110454
https://doi.org/10.1016/j.jenvman.2020.110454 pmid: 32250891
55 Y, Cao X, Wang X, Zhang T, Misselbrook Z, Bai L Ma. Nitrifier denitrification dominates nitrous oxide production in composting and can be inhibited by a bioelectrochemical nitrification inhibitor. Bioresource Technology , 2021, 341 : 125851
https://doi.org/10.1016/j.biortech.2021.125851 pmid: 34523577
56 Y, Cao X, Wang X, Zhang T, Misselbrook Z, Bai L Ma. An electric field immobilizes heavy metals through promoting combination with humic substances during composting. Bioresource Technology , 2021, 330 : 124996
https://doi.org/10.1016/j.biortech.2021.124996 pmid: 33757680
57 Y, Cao X, Wang X, Zhang T H, Misselbrook Z, Bai H, Wang L Ma. The effects of electric field assisted composting on ammonia and nitrous oxide emissions varied with different electrolytes. Bioresource Technology , 2022, 344(Pt A): 126194
58 and Horticulture Development Board (AHDB) Agriculture. Nutrient Management Guide (RB209). AHDB , 2021. Available at AHDB website on July 8, 2022
59 F A, Nicholson A, Bhogal D, Chadwick E, Gill R D, Gooday E, Lord T, Misselbrook A J, Rollett E, Sagoo K A, Smith R E, Thorman J R, Williams B J Chambers. An enhanced software tool to support better use of manure nutrients: MANNER- NPK . Soil Use and Management , 2013, 29(4): 473−484
60 J W, Doran M, Sarrantonio M A Leibig. Soil health and sustainability. In: Sparks D L, ed. Advances in Agronomy, vol. 56. San Diego: Academic Press , 1996, 1–54
61 J M, Prout K D, Shepherd S P, McGrath G J D, Kirk S M Haefele. What is a good level of soil organic matter? An index based on organic carbon to clay ratio. European Journal of Soil Science , 2021, 72( 6): 2493–2503
https://doi.org/10.1111/ejss.13012
62 R Lal. Soil health and carbon management. Food and Energy Security , 2016, 5( 4): 212–222
https://doi.org/10.1002/fes3.96
63 D S, Powlson A P, Whitmore K W T Goulding. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science , 2011, 62( 1): 42–55
https://doi.org/10.1111/j.1365-2389.2010.01342.x
64 A E, Johnston P R, Poulton K Coleman. Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. In: Sparks D L, ed. Advances in Agronomy, vol. 101. San Diego: Academic Press , 2009, 1–57
65 Y, Zhao M, Wang S, Hu X, Zhang Z, Ouyang G, Zhang B, Huang S, Zhao J, Wu D, Xie B, Zhu D, Yu X, Pan S, Xu X Shi. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences of the United States of America , 2018, 115( 16): 4045–4050
https://doi.org/10.1073/pnas.1700292114 pmid: 29666318
66 Q, Liao X, Zhang Z, Li G, Pan P, Smith Y, Jin X Wu. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Global Change Biology , 2009, 15( 4): 861–875
https://doi.org/10.1111/j.1365-2486.2008.01792.x
67 G, Pan P, Smith W Pan. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems & Environment , 2009, 129( 1–3): 344–348
https://doi.org/10.1016/j.agee.2008.10.008
68 G, Pan P, Zhou Z, Li P, Smith L, Li D, Qiu X, Zhang X, Xu S, Shen X Chen. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agriculture, Ecosystems & Environment , 2009, 131( 3–4): 274–280
https://doi.org/10.1016/j.agee.2009.01.020
69 F, Ren X, Zhang J, Liu N, Sun Z, Sun L, Wu M Xu. A synthetic analysis of livestock manure substitution effects on organic carbon changes in China’s arable topsoil. Catena , 2018, 171 : 1–10
https://doi.org/10.1016/j.catena.2018.06.036
70 F, Ren T H, Misselbrook N, Sun X, Zhang S, Zhang J, Jiao M, Xu L Wu. Spatial changes and driving variables of topsoil organic carbon stocks in Chinese croplands under different fertilization strategies. Science of the Total Environment , 2021, 767 : 44350
https://doi.org/10.1016/j.scitotenv.2020.144350 pmid: 33434843
71 G, Pan X, Xu P, Smith W, Pan R Lal. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agriculture, Ecosystems & Environment , 2010, 136( 1–2): 133–138
https://doi.org/10.1016/j.agee.2009.12.011
72 X, Yan Z, Cai S, Wang P Smith. Direct measurement of soil organic carbon content change in the croplands of China. Global Change Biology , 2011, 17( 3): 1487–1496
https://doi.org/10.1111/j.1365-2486.2010.02286.x
73 K, Cheng G, Pan P, Smith T, Luo L, Li J, Zheng X, Zhang X, Han M Yan. Carbon footprint of China’s crop production—an estimation using agro-statistics data over 1993–2007. Agriculture, Ecosystems & Environment , 2011, 142( 3–4): 231–237
https://doi.org/10.1016/j.agee.2011.05.012
74 K, Cheng M, Yan D, Nayak G X, Pan P, Smith J F, Zheng J W Zheng. Carbon footprint of crop production in China: an analysis of National Statistics data. Journal of Agricultural Science , 2015, 153( 3): 422–431
https://doi.org/10.1017/S0021859614000665
75 S, Feng S, Tan A, Zhang Q, Zhang G, Pan F, Qu P, Smith L, Li X Zhang. Effect of household land management on cropland topsoil organic carbon storage at plot scale in a red earth soil area of South China. Journal of Agricultural Science , 2011, 149( 5): 557–566
https://doi.org/10.1017/S0021859611000323 pmid: 22505775
76 Z, Li X, Xu G, Pan P, Smith K Cheng. Irrigation regime affected SOC content rather than plow layer thickness of rice paddies: a county level survey from a river basin in lower Yangtze valley, China. Agricultural Water Management , 2016, 172 : 31–39
https://doi.org/10.1016/j.agwat.2016.04.009
77 Y, Liao W L, Wu F Q, Meng P, Smith R Lal. Increase in soil organic carbon by agricultural intensification in Northern China. Biogeosciences , 2015, 12( 5): 1403–1413
https://doi.org/10.5194/bg-12-1403-2015
78 K, Cheng J, Zheng D, Nayak P, Smith G Pan. Re-evaluating biophysical and technologically attainable potential of topsoil carbon sequestration in China’s croplands. Soil Use and Management , 2013, 29( 4): 501–509
https://doi.org/10.1111/sum.12077
79 B, Gao T, Huang X, Ju B, Gu W, Huang L, Xu R M, Rees D S, Powlson P, Smith S Cui. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Global Change Biology , 2018, 24( 12): 5590–5606
https://doi.org/10.1111/gcb.14425 pmid: 30118572
80 Y, Yang J, Fang W, Ma P, Smith A, Mohammat S, Wang W Wang. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Global Change Biology , 2010, 16( 11): 3036–3047
https://doi.org/10.1111/j.1365-2486.2009.02123.x
81 Y, Yang J, Fang C, Ji W, Ma A, Mohammat S, Wang S, Wang A, Datta D, Robinson P Smith. Widespread decreases in topsoil inorganic carbon stocks across China’s grasslands during 1980s−2000s. Global Change Biology , 2012, 18( 12): 3672–3680
https://doi.org/10.1111/gcb.12025
82 Y, Yang C, Ji W, Ma S, Wang S, Wang W, Han A, Mohammat D, Robinson P Smith. Significant soil acidification across northern China’s grasslands during 1980s–2000s. Global Change Biology , 2012, 18( 7): 2292–2300
https://doi.org/10.1111/j.1365-2486.2012.02694.x
83 S, Raza N, Miao P, Wang X, Ju Z, Chen J, Zhou Y Kuzyakov. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology , 2020, 26( 6): 3738–3751
https://doi.org/10.1111/gcb.15101 pmid: 32239592
84 D, Nayak E, Saetnan K, Cheng W, Wang F, Koslowski Y F, Cheng W Y, Zhu K J, Wang J X, Liu D, Moran X, Yan L, Cardenas J, Newbold G, Pan Y, Lu P Smith. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agriculture, Ecosystems & Environment , 2015, 209 : 108–124
https://doi.org/10.1016/j.agee.2015.04.035
85 Y, Tang L, Luo A, Carswell T, Misselbrook J, Shen J Han. Changes in soil organic carbon status and microbial community structure following biogas slurry application in a wheat-rice rotation. Science of the Total Environment , 2021, 757 : 143786
https://doi.org/10.1016/j.scitotenv.2020.143786 pmid: 33223165
86 Q, Zhu X, Liu T, Hao M, Zeng J, Shen F, Zhang Vries W De. Modeling soil acidification in typical Chinese cropping systems. Science of the Total Environment , 2018, 613–614: 1339–1348
87 K W T Goulding. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management , 2016, 32( 3): 390–399
https://doi.org/10.1111/sum.12270 pmid: 27708478
88 Q, Zhu X, Liu T, Hao M, Zeng J, Shen F, Zhang Vries W de. Cropland acidification increases risk of yield losses and food insecurity in China. Environmental Pollution , 2020, 256 : 113145
https://doi.org/10.1016/j.envpol.2019.113145 pmid: 31662249
89 D, Xu A, Carswell Q, Zhu F, Zhang Vries W de. Modelling long-term impacts of fertilization and liming on soil acidification at Rothamsted experimental station. Science of the Total Environment , 2020, 713 : 136249
https://doi.org/10.1016/j.scitotenv.2019.136249 pmid: 32019004
90 D, Xu Q, Zhu G, Ros Z, Cai S, Wen M, Xu F, Zhang Vries W de. Calculation of spatially explicit amounts and intervals of agricultural lime applications at county-level in China. Science of the Total Environment , 2022, 806(Pt 4): 150955
91 Z, Cai M, Xu B, Wang L, Zhang S, Wen S Gao. Effectiveness of crop straws, and swine manure in ameliorating acidic red soils: a laboratory study. Journal of Soils and Sediments , 2018, 18( 9): 2893–2903
https://doi.org/10.1007/s11368-018-1974-7
92 Z, Cai M, Xu L, Zhang Y, Yang B, Wang S, Wen T H, Misselbrook A M, Carswell Y, Duan S Gao. Decarboxylation of organic anions to alleviate acidification of red soils from urea application. Journal of Soils and Sediments , 2020, 20( 8): 3124–3135
https://doi.org/10.1007/s11368-020-02630-2
93 Z, Cai B, Wang L, Zhang S, Wen M, Xu T H, Misselbrook A M, Carswell S Gao. Striking a balance between N sources: mitigating soil acidification and accumulation of phosphorous and heavy metals from manure. Science of the Total Environment , 2021, 754 : 142189
https://doi.org/10.1016/j.scitotenv.2020.142189 pmid: 33254904
94 J, Zhang der Heijden M G A, van F, Zhang S F Bender. Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Frontiers of Agricultural Science and Engineering , 2020, 7( 3): 236–242
https://doi.org/10.15302/J-FASE-2020336
95 J, Zhang T, Li J, Jia J, Zhang F Zhang. Bacterial taxa and fungal diversity are the key factors determining soil multifunctionality in different cropping systems. Land Degradation & Development , 2021, 32( 17): 5012–5022
https://doi.org/10.1002/ldr.4087
96 K, Cui S P Shoemaker. A look at food security in China. NPJ Science of Food , 2018, 2 : 4
97 Z, Liu Z, Deng G, He H, Wang X, Zhang J, Lin Y, Qi X Liang. Challenges and opportunities for carbon neutrality in China. Nature Reviews: Earth & Environment , 2022, 3( 2): 141–155
https://doi.org/10.1038/s43017-021-00244-x
98 X, Cui Z, Shang L, Xia R, Xu W, Adalibieke X, Zhan P, Smith F Zhou. Deceleration of cropland-N2O emissions in China and future mitigation potentials. Environmental Science & Technology , 2022, 56( 7): 4665–4675
https://doi.org/10.1021/acs.est.1c07276 pmid: 35254824
99 Z, Shang F, Zhou P, Smith E, Saikawa P, Ciais J, Chang H, Tian Grosso S J, Del A, Ito M, Chen Q, Wang Y, Bo X, Cui S, Castaldi R, Juszczak Å, Kasimir V, Magliulo S, Medinets V, Medinets R M, Rees G, Wohlfahrt S Sabbatini. Weakened growth of cropland-N2 O emissions in China associated with nationwide policy interventions. Global Change Biology , 2019, 25( 11): 3706–3719
https://doi.org/10.1111/gcb.14741 pmid: 31233668
100 Z, Bai S, Jin Y, Wu Ermgassen E, zu O, Oenema D, Chadwick L, Lassaletta G, Velthof J, Zhao L Ma. China’s pig relocation in balance. Nature Sustainability , 2019, 2( 10): 888
https://doi.org/10.1038/s41893-019-0391-2
101 Z, Bai W, Winiwarter Z, Klimont G, Velthof T, Misselbrook Z, Zhao X, Jin O, Oenema C, Hu L Ma. Further improvement of air quality in China needs clear ammonia mitigation target. Environmental Science & Technology , 2019, 53( 18): 10542–10544
https://doi.org/10.1021/acs.est.9b04725 pmid: 31496221
102 J, Shen Q, Zhu X, Jiao H, Ying H, Wang X, Wen W, Xu T, Li W, Cong X, Liu Y, Hou Z, Cui O, Oenema W J, Davies F Zhang. Agriculture Green Development: a model for China and the world. Frontiers of Agricultural Science and Engineering , 2020, 7( 1): 5–13
https://doi.org/10.15302/J-FASE-2019300
103 W, Zhang G, Cao X, Li H, Zhang C, Wang Q, Liu X, Chen Z, Cui J, Shen R, Jiang G, Mi Y, Miao F, Zhang Z Dou. Closing yield gaps in China by empowering smallholder farmers. Nature , 2016, 537( 7622): 671–674
https://doi.org/10.1038/nature19368 pmid: 27602513
[1] Jianlin SHEN, Yong LI, Yi WANG, Yanyan LI, Xiao ZHU, Wenqian JIANG, Yuyuan LI, Jinshui WU. SOIL NITROGEN CYCLING AND ENVIRONMENTAL IMPACTS IN THE SUBTROPICAL HILLY REGION OF CHINA: EVIDENCE FROM MEASUREMENTS AND MODELING[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 407-424.
[2] Fen ZHANG, Xiaopeng GAO, Junjie WANG, Fabo LIU, Xiao MA, Hailin CAO, Xinping CHEN, Xiaozhong WANG. SUSTAINABLE NITROGEN MANAGEMENT FOR VEGETABLE PRODUCTION IN CHINA[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 373-385.
[3] Xia LIANG, Helen SUTER, Shu Kee LAM, Charlie WALKER, Roya KHALIL, Deli CHEN. SUSTAINABLE NITROGEN MANAGEMENT IN AUSTRALIAN AGROECOSYSTEMS: CHALLENGES AND OPPORTUNITIES[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 366-372.
[4] Cathryn A. O'SULLIVAN, Elliott G. DUNCAN, Margaret M. ROPER, Alan E. RICHARDSON, John A. KIRKEGAARD, Mark B. PEOPLES. ROOT EXUDATES FROM CANOLA EXHIBIT BIOLOGICAL NITRIFICATION INHIBITION AND ARE EFFECTIVE IN INHIBITING AMMONIA OXIDATION IN SOIL[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 177-186.
[5] Solomon Tulu TADESSE, Oene OENEMA, Christy van BEEK, Fikre Lemessa OCHO. EXPLORING THE RECYCLING OF MANURE FROM URBAN LIVESTOCK FARMS: A CASE STUDY IN ETHIOPIA[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 159-174.
[6] Jianchang YANG. Approaches to achieve high grain yield and high resource use efficiency in rice[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 115-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed