|
|
|
SOIL NITROGEN CYCLING AND ENVIRONMENTAL IMPACTS IN THE SUBTROPICAL HILLY REGION OF CHINA: EVIDENCE FROM MEASUREMENTS AND MODELING |
Jianlin SHEN1,2( ), Yong LI3( ), Yi WANG1,4, Yanyan LI1, Xiao ZHU1,2, Wenqian JIANG1,2, Yuyuan LI1,2, Jinshui WU1,2 |
1. Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 4. College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China |
|
|
|
|
Abstract ● Soil nitrogen fluxes and influencing factors were reviewed in the subtropical hilly regions. ● Fertilizer application and atmospheric deposition contributed largely to soil nitrogen input. ● High gaseous, runoff and leaching losses of soil nitrogen were measured. ● Soil nitrogen cycles are well modelled with the Catchment Nutrients Management Model. The subtropical hilly region of China is a region with intensive crop and livestock production, which has resulted in serious N pollution in soil, water and air. This review summarizes the major soil N cycling processes and their influencing factors in rice paddies and uplands in the subtropical hilly region of China. The major N cycling processes include the N fertilizer application in croplands, atmospheric N deposition, biological N fixation, crop N uptake, ammonia volatilization, N2O/NO emissions, nitrogen runoff and leaching losses. The catchment nutrients management model for N cycle modeling and its case studies in the subtropical hilly region were also introduced. Finally, N management practices for improving N use efficiency in cropland, as well as catchment scales are summarized.
|
| Keywords
nitrogen cycling
soil nitrogen
nitrogen deposition
greenhouse gases emission
non-point source pollution
nitrogen use efficiency
|
|
Corresponding Author(s):
Jianlin SHEN,Yong LI
|
| About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
|
Just Accepted Date: 27 April 2022
Online First Date: 02 June 2022
Issue Date: 09 September 2022
|
|
| 1 |
and Agriculture Organization of the United Nations (FAO) Food. FAO Statistical Databases. Rome: FAO , 2021. Available at FAO website on August 20, 2021
|
| 2 |
J H, Guo X J, Liu Y, Zhang J L, Shen W X, Han W F, Zhang P, Christie K W T, Goulding P M, Vitousek F S Zhang. Significant acidification in major Chinese croplands. Science , 2010, 327( 5968): 1008–1010
https://doi.org/10.1126/science.1182570
pmid: 20150447
|
| 3 |
B, Gu L, Zhang Dingenen R, Van M, Vieno Grinsven H J, Van X, Zhang S, Zhang Y, Chen S, Wang C, Ren S, Rao M, Holland W, Winiwarter D, Chen J, Xu M A Sutton. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science , 2021, 374( 6568): 758–762
https://doi.org/10.1126/science.abf8623
pmid: 34735244
|
| 4 |
C, Yu X, Huang H, Chen H C J, Godfray J S, Wright J W, Hall P, Gong S, Ni S, Qiao G, Huang Y, Xiao J, Zhang Z, Feng X, Ju P, Ciais N C, Stenseth D O, Hessen Z, Sun L, Yu W, Cai H, Fu X, Huang C, Zhang H, Liu J Taylor. Managing nitrogen to restore water quality in China. Nature , 2019, 567( 7749): 516–520
https://doi.org/10.1038/s41586-019-1001-1
pmid: 30818324
|
| 5 |
X Q, Fu Y, Li W J, Su J L, Shen R L, Xiao C L, Tong J S Wu. Annual dynamics of N2O emissions from a tea field in southern subtropical China. Plant, Soil and Environment , 2012, 58( 8): 373–378
https://doi.org/10.17221/719/2011-PSE
|
| 6 |
J, Liu X, Ouyang J, Shen Y, Li W, Sun W, Jiang J Wu. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Science of the Total Environment , 2020, 715 : 136852
https://doi.org/10.1016/j.scitotenv.2020.136852
pmid: 32041041
|
| 7 |
W Y, Yi J L, Shen G P, Liu J, Wang L F, Yu Y, Li R, Stefan J S Wu. High NH3 deposition in the environs of a commercial fattening pig farm in central south China. Environmental Research Letters , 2021, 16( 12): 125007
https://doi.org/10.1088/1748-9326/ac3603
|
| 8 |
J L, Shen H, Tang J Y, Liu C, Wang Y, Li T D, Ge D L, Jones J S Wu. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agriculture, Ecosystems & Environment , 2014, 188 : 264–274
https://doi.org/10.1016/j.agee.2014.03.002
|
| 9 |
Y, Wang X L, Liu Y, Li F, Liu J L, Shen Y Y, Li Q M, Ma J, Yin J S Wu. Rice agriculture increases base flow contribution to catchment nitrate loading in subtropical central China. Agriculture, Ecosystems & Environment , 2015, 214 : 86–95
https://doi.org/10.1016/j.agee.2015.08.017
|
| 10 |
C, Wang J L, Shen J Y, Liu H L, Qin Q, Yuan F L, Fan Y J, Hu J, Wang W X, Wei Y, Li J Wu. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: a four-year study. Soil Biology & Biochemistry , 2019, 135 : 251–263
https://doi.org/10.1016/j.soilbio.2019.05.012
|
| 11 |
X, Zhu J, Shen Y, Li X, Liu W, Xu F, Zhou J, Wang S, Reis J Wu. Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China. Environmental Pollution , 2021, 289 : 117870
https://doi.org/10.1016/j.envpol.2021.117870
pmid: 34385131
|
| 12 |
D, Chen Y, Li C, Wang X Q, Fu X L, Liu J L, Shen Y, Wang R L, Xiao D L, Liu J S Wu. Measurement and modeling of nitrous and nitric oxide emissions from a tea field in subtropical central China. Nutrient Cycling in Agroecosystems , 2017, 107( 2): 157–173
https://doi.org/10.1007/s10705-017-9826-1
|
| 13 |
D, Zhang H Y, Wang J, Pan J F, Luo J, Liu B J, Gu S, Liu L M, Zhai S, Lindsey Y T, Zhang Q L, Lei S X, Wu P, Smith H B Liu. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agriculture, Ecosystems & Environment , 2018, 265 : 8–14
https://doi.org/10.1016/j.agee.2018.05.023
|
| 14 |
W C, Ding X P, Xu P, He J J, Zhang Z L, Cui W Zhou. Estimating regional N application rates for rice in china based on target yield, indigenous N supply, and N loss. Environmental Pollution , 2020, 263(Pt B): 114408
|
| 15 |
C, Wang J Y, Liu J L, Shen D, Chen Y, Li B S, Jiang J S Wu. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: a 4-year field experiment. Agriculture, Ecosystems & Environment , 2018, 262 : 83–96
https://doi.org/10.1016/j.agee.2018.04.017
|
| 16 |
X M, Zhong X, Zhou J C, Fei Y, Huang G, Wang X R, Kang W F, Hu H R, Zhang X M, Rong J W Peng. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agriculture, Ecosystems & Environment , 2021, 306 : 107183
https://doi.org/10.1016/j.agee.2020.107183
|
| 17 |
W Y, Han J M, Xu K, Wei Y Z, Shi L F Ma. Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China. Environmental Earth Sciences , 2013, 70( 6): 2495–2500
https://doi.org/10.1007/s12665-013-2292-4
|
| 18 |
W, Li F, Xiang L Y, Zhou H Y, Liu Z X Zeng. Effects of nitrogen fertilizer reduction on photosynthesis and nitrogen use efficiency in tea plant. Chinese Journal of Ecology , 2020, 39(1): 93–98 (in Chinese)
|
| 19 |
H L, Li L Y, Wang H, Cheng K, Wei L, Ruan L Y Wu. The effects of nitrogen supply on agronomic traits and chemical components of tea plant. Journal of Tea Science , 2017, 37(4): 383–391 ( in Chinese)
|
| 20 |
M, Zhou S, Ying J, Chen P, Jiang Y Teng. Effects of biochar-based fertilizer on nitrogen use efficiency and nitrogen losses via leaching and ammonia volatilization from an open vegetable field. Environmental Science and Pollution Research International , 2021, 28( 46): 65188–65199
https://doi.org/10.1007/s11356-021-15210-9
pmid: 34227011
|
| 21 |
X L, Li X, Lan Z P, Pan G L, Sun Q L, Tan C X, Hu X C Sun. In fluence of organic fertilizer and adding DMPP on vegetable production and the nitrate leaching. Soil and Fertilizer Sciences in China , 2018, 02: 118−126 ( in Chinese)
|
| 22 |
M Y, Hou L, Zhang Z W, Wang D L, Yang L L, Wang W M, Xiu J N Zhao. Estimation of fertilizer usage from main crops in China. Journal of Agricultural Resources and Environment , 2017, 34(4): 360−367 ( in Chinese)
|
| 23 |
J L, Shen Y, Li X J, Liu X S, Luo H, Tang Y Z, Zhang J S Wu. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China. Atmospheric Environment , 2013, 67 : 415–424
https://doi.org/10.1016/j.atmosenv.2012.10.068
|
| 24 |
H, Wang G, Shi M, Tian Y, Chen B, Qiao L, Zhang F, Yang L, Zhang Q Luo. Wet deposition and sources of inorganic nitrogen in the Three Gorges Reservoir Region, China. Environmental Pollution , 2018, 233 : 520–528
https://doi.org/10.1016/j.envpol.2017.10.085
pmid: 29102882
|
| 25 |
X Q, Ouyang B, Wang J L, Shen X, Zhu J F, Wang Y, Li J S Wu. Atmospheric nitrogen dioxide, nitric acid, nitrate nitrogen concentrations, and wet and dry deposition rates in a double rice region in subtropical China. Environmental Sciences , 2019, 40(6): 2607–2614 ( in Chinese)
pmid: 31854651
|
| 26 |
X, Zhu J F, Wang J L, Shen R L, Xiao J, Wang J S, Wu Y Li. Comparison between atmospheric wet-only and bulk nitrogen depositions at two sites in subtropical China. Environmental Sciences , 2018, 39(6): 2557–2565 ( in Chinese)
|
| 27 |
L, Zhang M, Tian C, Peng C, Fu T, Li Y, Chen Y, Qiu Y, Huang H, Wang Z, Li F Yang. Nitrogen wet deposition in the Three Gorges Reservoir area: characteristics, fluxes, and contributions to the aquatic environment. Science of the Total Environment , 2020, 738 : 140309
https://doi.org/10.1016/j.scitotenv.2020.140309
pmid: 32806348
|
| 28 |
L Y, Zhang B Q, Qiao H B, Wang M, Tian J, Cui C, Fu Y M, Huang F M Yang. Chemical characteristics of precipitation in a typical urban site of the hinterland in Three Gorges Reservoir, China. Journal of Chemistry , 2018, 2018 : 1–10
https://doi.org/10.1155/2018/2914313
|
| 29 |
J, Zhu N, He Q, Wang G, Yuan D, Wen G, Yu Y Jia. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Science of the Total Environment , 2015, 511 : 777–785
https://doi.org/10.1016/j.scitotenv.2014.12.038
pmid: 25617702
|
| 30 |
K, Walaszek M, Kryza A J Dore. The impact of precipitation on wet deposition of sulphur and nitrogen compounds. Ecological Chemistry and Engineering S , 2013, 20( 4): 733–745
https://doi.org/10.2478/eces-2013-0051
|
| 31 |
M, Zheng Z, Zhou Y, Luo P, Zhao J Mo. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: a meta-analysis. Global Change Biology , 2019, 25( 9): 3018–3030
https://doi.org/10.1111/gcb.14705
pmid: 31120621
|
| 32 |
D J, Li Q S, Zhang K C, Xiao Z C, Wang K L Wang. Divergent responses of biological nitrogen fixation in soil, litter and moss to temperature and moisture in a karst forest, southwest China. Soil Biology & Biochemistry , 2018, 118 : 1–7
https://doi.org/10.1016/j.soilbio.2017.11.026
|
| 33 |
Q, Wang J, Wang Y, Li D, Chen J, Ao W, Zhou D, Shen Q, Li Z, Huang Y Jiang. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Science of the Total Environment , 2018, 619-620 : 1530–1537
https://doi.org/10.1016/j.scitotenv.2017.10.064
pmid: 29129329
|
| 34 |
X J, Wang B J, Liu J, Ma Y H, Zhang T L, Hu H, Zhang Y C, Feng H L, Pan Z W, Xu G, Liu X W, Lin J G, Zhu Q C, Bei Z B Xie. Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China. Soil Biology & Biochemistry , 2019, 131 : 81–89
https://doi.org/10.1016/j.soilbio.2018.12.028
|
| 35 |
X M, Zhu W, Zhang H, Chen J M Mo. Impacts of nitrogen deposition on soil nitrogen cycle in forest ecosystems: a review. Acta Ecologica Sinica , 2015, 35( 3): 35–43
https://doi.org/10.1016/j.chnaes.2015.04.004
|
| 36 |
M, Zheng H, Chen D, Li Y, Luo J Mo. Substrate stoichiometry determines nitrogen fixation throughout succession in southern Chinese forests. Ecology Letters , 2020, 23( 2): 336–347
https://doi.org/10.1111/ele.13437
pmid: 31802606
|
| 37 |
D F, Cusack W, Silver W H McDowell. Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems , 2009, 12( 8): 1299–1315
https://doi.org/10.1007/s10021-009-9290-0
|
| 38 |
S C, Reed C C, Cleveland A R Townsend. Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology , 2008, 89( 10): 2924–2934
https://doi.org/10.1890/07-1430.1
pmid: 18959329
|
| 39 |
M H, Zheng H, Chen D J, Li X M, Zhu W, Zhang S L, Fu J M Mo. Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees. Biology and Fertility of Soils , 2016, 52( 5): 665–674
https://doi.org/10.1007/s00374-016-1109-5
|
| 40 |
Y H Tian. Composition and diversity of nitrogen-fixing bacteria in rhizosphere of tea at different ages. Tea of Fujian , 2000, 3: 19−21 ( in Chinese)
|
| 41 |
X Y, Han Z, Li L X, Zhang X Q Huang. Screening, identification and inoculation effect of azotobacter from the soils of tea garden. Journal of Tea Science , 2014, 34(5): 497−505 ( in Chinese)
|
| 42 |
X Y, Han L X, Zhang X Q, Huang Y H, Dong Z, Li T Shang. Effect of nitrogen transformation bacteria on microbial community and nutrient contents in rhizosphere soil of tea plan. Journal of Tea Science , 2015, 35(5): 405–414 ( in Chinese)
|
| 43 |
D F, Herridge M B, Peoples R M Boddey. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil , 2008, 311( 1): 1–18
https://doi.org/10.1007/s11104-008-9668-3
|
| 44 |
Q C, Bei G, Liu H Y, Tang G, Cadisch F, Rasche Z B Xie. Heterotrophic and phototrophic 15N2 fixation and distribution of fixed 15N in a flooded rice-soil system. Soil Biology & Biochemistry , 2013, 59 : 25–31
https://doi.org/10.1016/j.soilbio.2013.01.008
|
| 45 |
C, Wu X, Wei Z, Hu Y, Liu Y, Hu H, Qin X, Chen J, Wu T, Ge M, Zhran Y Su. Diazotrophic community variation underlies differences in nitrogen fixation potential in paddy soils across a climatic gradient in China. Microbial Ecology , 2021, 81( 2): 425–436
https://doi.org/10.1007/s00248-020-01591-w
pmid: 32901387
|
| 46 |
A R, Barron N, Wurzburger J P, Bellenger S J, Wright A M L, Kraepiel L O Hedin. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience , 2009, 2( 1): 42–45
https://doi.org/10.1038/ngeo366
|
| 47 |
J, Ma Q, Bei X, Wang P, Lan G, Liu X, Lin Q, Liu Z, Lin B, Liu Y, Zhang H, Jin T, Hu J, Zhu Z Xie. Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. Science of the Total Environment , 2019, 649 : 686–694
https://doi.org/10.1016/j.scitotenv.2018.08.318
pmid: 30176479
|
| 48 |
H, Liao Y, Li H Yao. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. Journal of Soils and Sediments , 2018, 18( 3): 1076–1086
https://doi.org/10.1007/s11368-017-1836-8
|
| 49 |
J, Ma Q C, Bei X J, Wang G, Liu G, Cadisch X W, Lin J G, Zhu X L, Sun Z Xie. Paddy system with a hybrid rice enhances cyanobacteria nostoc and increases N2 fixation. Pedosphere , 2019, 29( 3): 374–387
https://doi.org/10.1016/S1002-0160(19)60809-X
|
| 50 |
Y Z, Chen F, Wang Z D, Wu W J, Zhang B Q, Weng Z M You. Effects of soil nitrogen-fixing bacteria community and diversity after converting forestland into tea garden. Chinese Journal of Applied and Environmental Biology , 2020, 26(5): 1096–1106 ( in Chinese)
|
| 51 |
P, Jiang X B, Xie M, Huang X F, Zhou R C, Zhang J N, Chen D D, Wu B, Xia H, Xiong F X, Xu Y B Zou. Characterizing N uptake and use efficiency in rice as influenced by environments. Plant Production Science , 2016, 19( 1): 96–104
https://doi.org/10.1080/1343943X.2015.1128103
|
| 52 |
J F, Ying S B, Peng G Q, Yang N, Zhou R M, Visperas K G Cassman. Comparison of high-yield rice in tropical and subtropical environments: II. Nitrogen accumulation and utilization efficiency. Field Crops Research , 1998, 57( 1): 85–93
https://doi.org/10.1016/S0378-4290(97)00121-4
|
| 53 |
D L, Kong Y G, Jiu J, Chen K, Yu Y J, Zheng S, Wu S W, Liu J W Zou. Nitrogen use efficiency exhibits a trade-off relationship with soil N2O and NO emissions from wheat-rice rotations receiving manure substitution. Geoderma , 2021, 403 : 115374
https://doi.org/10.1016/j.geoderma.2021.115374
|
| 54 |
M, Wu G L, Li S P, Wei P F, Li M, Liu J, Liu Z P Li. Discrimination of soil productivity and fertilizer-nitrogen use efficiency in the paddy field of subtropical China after 27 years different fertilizations. Archives of Agronomy and Soil Science , 2021, 67( 2): 166–178
https://doi.org/10.1080/03650340.2020.1718114
|
| 55 |
W Y, Han L F, Ma Y Z, Shi J Y, Ruan S J Kemmitt. Nitrogen release dynamics and transformation of slow release fertiliser products and their effects on tea yield and quality. Journal of the Science of Food and Agriculture , 2008, 88( 5): 839–846
https://doi.org/10.1002/jsfa.3160
|
| 56 |
J, Liu B S, Jing J L, Shen X, Zhu W Y, Yi Y, Li J S Wu. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agriculture, Ecosystems & Environment , 2021, 311 : 107286
https://doi.org/10.1016/j.agee.2020.107286
|
| 57 |
M H, Sun B S, Jiang J L, Shen B L, Song Q Y, Li Y, Li J S Wu. The effects of combined application of pig manure and chemical fertilizers on soil nitrogen contents and nitrogen use efficiency in a subtropical paddy field. Research of Agricultural Modernization , 2021, 42(1): 175−183 ( in Chinese)
|
| 58 |
Y H, Tan J L, Shen B S, Jiang Q Y, Li Y, Li J S Wu. The effects of straw incorporation and water management on nitrogen uptake and nitrogen use efficiency in a double rice cropping system. Research of Agricultural Modernization , 2018, 39(3): 511–519 ( in Chinese)
|
| 59 |
W H, Mi S Y, Zheng X, Yang L H, Wu Y L, Liu J Q Chen. Comparison of yield and nitrogen use efficiency of different types of nitrogen fertilizers for different rice cropping systems under subtropical monsoon climate in China. European Journal of Agronomy , 2017, 90 : 78–86
https://doi.org/10.1016/j.eja.2017.07.013
|
| 60 |
X X, Li J, Cao J K, Huang D Y, Xing S B Peng. Effects of topsoil removal on nitrogen uptake, biomass accumulation, and yield formation in puddled-transplanted rice. Field Crops Research , 2021, 265 : 108130
https://doi.org/10.1016/j.fcr.2021.108130
|
| 61 |
Y, Chen X, Tang S M, Yang C Y, Wu J Y Wang. Contributions of different N sources to crop N nutrition in a Chinese rice field. Pedosphere , 2010, 20( 2): 198–208
https://doi.org/10.1016/S1002-0160(10)60007-0
|
| 62 |
P, Liao S, Huang Gestel N C, van Y J, Zeng Z M, Wu Groenigen K J van. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Research , 2018, 216 : 217–224
https://doi.org/10.1016/j.fcr.2017.11.026
|
| 63 |
M, Wu G, Li W, Li J, Liu M, Liu C, Jiang Z Li. Nitrogen fertilizer deep placement for increased grain yield and nitrogen recovery efficiency in rice grown in subtropical China. Frontiers in Plant Science , 2017, 8 : 1227
https://doi.org/10.3389/fpls.2017.01227
pmid: 28744302
|
| 64 |
X M, Zhong J W, Peng X R, Kang Y F, Wu G W, Luo W F, Hu X Zhou. Optimizing agronomic traits and increasing economic returns of machine-transplanted rice with side-deep fertilization of double-cropping rice system in southern China. Field Crops Research , 2021, 270 : 108191
https://doi.org/10.1016/j.fcr.2021.108191
|
| 65 |
H, Liang S, Li L, Zhang C X, Xu Y H, Lv S J, Gao W D Cao. Long-term green manuring enhances crop N uptake and reduces N losses in rice production system. Soil & Tillage Research , 2022, 220 : 105369
https://doi.org/10.1016/j.still.2022.105369
|
| 66 |
B A, Linquist L J, Liu Kessel C, van Groenigen K J van. Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crops Research , 2013, 154 : 246–254
https://doi.org/10.1016/j.fcr.2013.08.014
|
| 67 |
P F, Li J W, Lu Y, Wang S, Wang S, Hussain T, Ren R H, Cong X Li. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agriculture, Ecosystems & Environment , 2018, 251 : 78–87
https://doi.org/10.1016/j.agee.2017.09.020
|
| 68 |
Y, Wu Y, Li X, Fu J, Shen D, Chen Y, Wang X, Liu R, Xiao W, Wei J Wu. Effect of controlled-release fertilizer on N2O emissions and tea yield from a tea field in subtropical central China. Environmental Science and Pollution Research , 2018, 25( 25): 25580–25590
https://doi.org/10.1007/s11356-018-2646-2
pmid: 29959739
|
| 69 |
P, Yan L, Wu D, Wang J, Fu C, Shen X, Li L, Zhang L, Zhang L, Fan H Wenyan. Soil acidification in Chinese tea plantations. Science of the Total Environment , 2020, 715 : 136963
https://doi.org/10.1016/j.scitotenv.2020.136963
pmid: 32014781
|
| 70 |
W, Xu L, Zhang X Liu. A database of atmospheric nitrogen concentration and deposition from the nationwide monitoring network in China. Scientific Data , 2019, 6( 1): 51
https://doi.org/10.1038/s41597-019-0061-2
pmid: 31073123
|
| 71 |
W, Adalibieke X, Zhan X, Cui S, Reis W, Winiwarter F Zhou. Decoupling between ammonia emission and crop production in China due to policy interventions. Global Change Biology , 2021, 27( 22): 5877–5888
https://doi.org/10.1111/gcb.15847
pmid: 34403176
|
| 72 |
X, Zhan W, Adalibieke X, Cui W, Winiwarter S, Reis L, Zhang Z, Bai Q, Wang W, Huang F Zhou. Improved estimates of ammonia emissions from global croplands. Environmental Science & Technology , 2021, 55( 2): 1329–1338
https://doi.org/10.1021/acs.est.0c05149
pmid: 33378621
|
| 73 |
Y, Jiang A X, Deng S, Bloszies S, Huang W J Zhang. Nonlinear response of soil ammonia emissions to fertilizer nitrogen. Biology and Fertility of Soils , 2017, 53( 3): 269–274
https://doi.org/10.1007/s00374-017-1175-3
|
| 74 |
H, Wang D, Zhang Y, Zhang L, Zhai B, Yin F, Zhou Y, Geng J, Pan J, Luo B, Gu H Liu. Ammonia emissions from paddy fields are underestimated in China. Environmental Pollution , 2018, 235 : 482–488
https://doi.org/10.1016/j.envpol.2017.12.103
pmid: 29324377
|
| 75 |
X, Zhang Y, Wu X, Liu S, Reis J, Jin U, Dragosits Damme M, Van L, Clarisse S, Whitburn P F, Coheur B Gu. Ammonia emissions may be substantially underestimated in China. Environmental Science & Technology , 2017, 51( 21): 12089–12096
https://doi.org/10.1021/acs.est.7b02171
pmid: 28984130
|
| 76 |
S, Huang W S, Lv S, Bloszies Q H, Shi X H, Pan Y J Zeng. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: a meta-analysis. Field Crops Research , 2016, 192 : 118–125
https://doi.org/10.1016/j.fcr.2016.04.023
|
| 77 |
Y L, Yao M, Zhang Y H, Tian M, Zhao K, Zeng B W, Zhang M, Zhao B Yin. Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crops Research , 2018, 216 : 158–164
https://doi.org/10.1016/j.fcr.2017.11.020
|
| 78 |
G, Yang H, Ji J, Sheng Y, Zhang Y, Feng Z, Guo L Chen. Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Science of the Total Environment , 2020, 743 : 140799
https://doi.org/10.1016/j.scitotenv.2020.140799
pmid: 32673926
|
| 79 |
J, Zhu L H, Shi F X, Tian L J, Huo X H Ji. Responses of ammonia volatilization to nitrogen application amount in typical double cropping paddy fields in Hunan Province. Journal of Plant Nutrition and Fertilizers , 2013, 19(5): 1129−1138 ( in Chinese)
|
| 80 |
J, Zhou J, Cui G Q, Wang Y Q, He Y H Ma. Ammonia volatilization in relation to N application rate and climate factors in upland red soil in spring and autumn. Acta Pedologica Sinica , 2007, (03): 499−506 ( in Chinese)
|
| 81 |
L, Shan Y, He J, Chen Q, Huang H Wang. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Journal of Environmental Sciences , 2015, 38 : 14–23
https://doi.org/10.1016/j.jes.2015.04.028
pmid: 26702964
|
| 82 |
D X, Lin X H, Fan F, Hu H T, Zhao J F Luo. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake Region, China. Pedosphere , 2007, 17( 5): 639–645
https://doi.org/10.1016/S1002-0160(07)60076-9
|
| 83 |
Z S, Yao X H, Zheng C Y, Liu R, Wang B H, Xie K Butterbach-Bahl. Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China. Agricultural and Forest Meteorology , 2018, 248 : 386–396
https://doi.org/10.1016/j.agrformet.2017.10.020
|
| 84 |
T Q, Liu C F, Li W F, Tan J P, Wang J H, Feng Q Y, Hu C G Cao. Rice-crayfish co-culture reduces ammonia volatilization and increases rice nitrogen uptake in central China. Agriculture, Ecosystems & Environment , 2022, 330 : 107869
https://doi.org/10.1016/j.agee.2022.107869
|
| 85 |
J S, Zhang F P, Zhang J H, Yang J P, Wang M L, Cai C F, Li C G Cao. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agriculture, Ecosystems & Environment , 2011, 140( 1-2): 164–173
|
| 86 |
Y, Zhang J, Luo F, Peng Y, Xiao A Du. Application of bag-controlled release fertilizer facilitated new root formation, delayed leaf, and root senescence in peach trees and improved nitrogen utilization efficiency. Frontiers in Plant Science , 2021, 12 : 627313
https://doi.org/10.3389/fpls.2021.627313
pmid: 33868330
|
| 87 |
Y Q, Xia S Q, Wang P F, Sun X Q, Chen J L, Shen H, Wang Z H, Xiao X M, Li G, Yang X Y Yan. Ammonia emission patterns of typical planting systems in the middle and lower reaches of the Yangtze River and key technologies for ammonia emission reduction. Chinese Journal of Eco-Agriculture , 2021, 29(12): 1981−1989 ( in Chinese)
|
| 88 |
X Q, Cui F, Zhou P, Ciais E A, Davidson F N, Tubiello X, Niu X T, Ju J G, Canadell A F, Bouwman R B, Jackson N D, Mueller X H, Zheng D R, Kanter H Q, Tian W, Adelibieke Y, Bo Q H, Wang X Y, Zhan D Q Zhu. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food , 2021, 2( 11): 886–893
https://doi.org/10.1038/s43016-021-00384-9
|
| 89 |
Y, Liu Q, Jiang Y, Sun Y, Jian F Zhou. Decline in nitrogen concentrations of eutrophic Lake Dianchi associated with policy interventions during 2002−2018. Environmental Pollution , 2021, 288 : 117826
https://doi.org/10.1016/j.envpol.2021.117826
pmid: 34329052
|
| 90 |
J, Wang P S, Xu , Li T, Z S W, Liu J W Zou. Differential responses of soil nitrogen-oxide emissions to organic substitution for synthetic fertilizer and biochar amendment in a subtropical tea plantation. Global Change Biology Bioenergy , 2021, 13 : 1260–1274
|
| 91 |
Y, Zhang H, Ding X, Zheng X, Ren L, Cardenas A, Carswell T Misselbrook. Land-use type affects N2O production pathways in subtropical acidic soils. Environmental Pollution , 2018, 237 : 237–243
https://doi.org/10.1016/j.envpol.2018.02.045
pmid: 29486457
|
| 92 |
T B, Zhu J B, Zhang T Z, Meng Y C, Zhang J J, Yang C, Müller Z C Cai. Tea plantation destroys soil retention of NO3− and increases N2O emissions in subtropical China. Soil Biology & Biochemistry , 2014, 73 : 106–114
https://doi.org/10.1016/j.soilbio.2014.02.016
|
| 93 |
C, Ji S Q, Li Y J, Geng Y M, Yuan J Z, Zhi K, Yu Z Q, Han S, Wu S W, Liu J W Zou. Decreased N2O and NO emissions associated with stimulated denitrification following biochar amendment in subtropical tea plantations. Geoderma , 2020, 365 : 114223
https://doi.org/10.1016/j.geoderma.2020.114223
|
| 94 |
M H, Zhou X G, Wang Y Q, Wang B Zhu. A three-year experiment of annual methane and nitrous oxide emissions from the subtropical permanently flooded rice paddy fields of China: Emission factor, temperature sensitivity and fertilizer nitrogen effect. Agricultural and Forest Meteorology , 2018, 250−251: 299−307
|
| 95 |
Panel on Climate Change (IPCC) Intergovernmental. 2006 IPCC guidelines for national greenhouse gas inventories volume 4: agriculture, forestry, and other land use. IPCC , 2006
|
| 96 |
W, Jiang W, Huang H, Liang Y, Wu X, Shi J, Fu Q, Wang K, Hu L, Chen H, Liu F Zhou. Is rice field a nitrogen source or sink for the environment. Environmental Pollution , 2021, 283 : 117122
https://doi.org/10.1016/j.envpol.2021.117122
pmid: 33872939
|
| 97 |
M H, Zhou B, Zhu X G, Wang Y Q Wang. Long-term field measurements of annual methane and nitrous oxide emissions from a Chinese subtropical wheat-rice rotation system. Soil Biology & Biochemistry , 2017, 115 : 21–34
https://doi.org/10.1016/j.soilbio.2017.08.005
|
| 98 |
S, Lin J, Iqbal R G, Hu M L N Feng. 2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems & Environment , 2010, 136( 1-2): 40–48
https://doi.org/10.1016/j.agee.2009.11.005
|
| 99 |
Y, Zhang W, Zhao Z, Cai C, Müller J Zhang. Heterotrophic nitrification is responsible for large rates of N2O emission from subtropical acid forest soil in China. European Journal of Soil Science , 2018, 69( 4): 646–654
https://doi.org/10.1111/ejss.12557
|
| 100 |
Q L, Zhuang Y Y, Lu C Min. An inventory of global N2O emissions from the soils of natural terrestrial ecosystems. Atmospheric Environment , 2012, 47 : 66–75
https://doi.org/10.1016/j.atmosenv.2011.11.036
|
| 101 |
Y, Wang S, Cheng H, Fang G, Yu M, Xu X, Dang L, Li L Wang. Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China. PLoS One , 2014, 9( 4): e93571
https://doi.org/10.1371/journal.pone.0093571
pmid: 24714387
|
| 102 |
D N, Xie G Y, Si T, Zhang J, Mulder L Duan. Nitrogen deposition increases N2O emission from an N-saturated subtropical forest in southwest China . Environmental Pollution , 2018, 243, part B: 1818–1824
|
| 103 |
Y B, Xu Z C Cai. Denitrification characteristics of subtropical soils in China affected by soil parent material and land use. European Journal of Soil Science , 2007, 58( 6): 1293–1303
https://doi.org/10.1111/j.1365-2389.2007.00923.x
|
| 104 |
A, Yamamoto H, Akiyama T, Naokawa Y, Miyazaki Y, Honda Y, Sano Y, Nakajima K Yagi. Lime-nitrogen application affects nitrification, denitrification, and N2O emission in an acidic tea soil. Biology and Fertility of Soils , 2014, 50( 1): 53–62
https://doi.org/10.1007/s00374-013-0830-6
|
| 105 |
Y, Huang X, Xiao X Long. Fungal denitrification contributes significantly to N2O production in a highly acidic tea soil. Journal of Soils and Sediments , 2017, 17( 6): 1599–1606
https://doi.org/10.1007/s11368-017-1655-y
|
| 106 |
Y, Zhang W, Zhao J B, Zhang Z C N Cai. 2O production pathways relate to land use type in acidic soils in subtropical China. Journal of Soils and Sediments , 2017, 17( 2): 306–314
https://doi.org/10.1007/s11368-016-1554-7
|
| 107 |
Y, Cheng J, Wang J B, Zhang C, Müller S Q Wang. Mechanistic insights into the effects of N fertilizer application on N2O-emission pathways in acidic soil of a tea plantation. Plant and Soil , 2015, 389( 1−2): 45–57
https://doi.org/10.1007/s11104-014-2343-y
|
| 108 |
H C, Yang R, Sheng Z X, Zhang L, Wang Q, Wang W X Wei. Responses of nitrifying and denitrifying bacteria to flooding-drying cycles in flooded rice soil. Applied Soil Ecology , 2016, 103 : 101–109
https://doi.org/10.1016/j.apsoil.2016.03.008
|
| 109 |
X H, Zheng Y, Huang Y S, Wang M X Wang. Seasonal characteristics of nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology , 2003, 9( 2): 219–227
https://doi.org/10.1046/j.1365-2486.2003.00586.x
|
| 110 |
X, Wu H F, Liu B J, Fu Q, Wang M, Xu H M, Wang F T, Yang G H Liu. Effects of land-use change and fertilization on N2O and NO fluxes, the abundance of nitrifying and denitrifying microbial communities in a hilly red soil region of southern China. Applied Soil Ecology , 2017, 120 : 111–120
https://doi.org/10.1016/j.apsoil.2017.08.004
|
| 111 |
D L, Kong Y G, Jin K, Yu D P, Swaney S W, Liu J W Zou. Low N2O emissions from wheat in a wheat-rice double cropping system due to manure substitution are associated with changes in the abundance of functional microbes. Agriculture, Ecosystems & Environment , 2021, 311 : 107318
https://doi.org/10.1016/j.agee.2021.107318
|
| 112 |
H J, Zheng Z, Liu X F, Nie J C, Zuo L Y Wang. Comparison of active nitrogen loss in four pathways on a sloped peanut field with red soil in China under conventional fertilization conditions. Sustainability , 2019, 11( 22): 6219
https://doi.org/10.3390/su11226219
|
| 113 |
Y, Dong J L, Yang X R, Zhao S H, Yang J, Mulder P, Dörsch G L Zhang. Nitrate runoff loss and source apportionment in a typical subtropical agricultural watershed. Environmental Science and Pollution Research International , 2022, 29( 14): 20186–20199
https://doi.org/10.1007/s11356-021-16935-3
pmid: 34725759
|
| 114 |
Y, Dong J L, Yang X R, Zhao S H, Yang J, Mulder P, Dörsch G L Zhang. Nitrate leaching and N accumulation in a typical subtropical red soil with N fertilization. Geoderma , 2022, 407 : 115559
https://doi.org/10.1016/j.geoderma.2021.115559
|
| 115 |
K Y, Yang M H, Wang Y, Wang L M, Yin Y, Li J S Wu. Characteristics and determinants of nitrogen and phosphorus runoff losses under different agronomic measures in double cropping paddy fields. Journal of Agro-Environment Science , 2019, 38(08): 1723–1734 ( in Chinese)
|
| 116 |
H, Zhao X Y, Li Y Jiang. Response of nitrogen losses to excessive nitrogen fertilizer application in intensive greenhouse vegetable production. Sustainability , 2019, 11( 6): 1513
https://doi.org/10.3390/su11061513
|
| 117 |
Q Tang. The study of characteristics of nitrogen loss in agricultural non-point pollution in different soil types and different rainfall intensity. Dissertation for the Master’s degree. Chengdu, China: Southwest Jiaotong University , 2017 ( in Chinese)
|
| 118 |
Z W, Zhou Y, Liu Q, Zhu X M, Lai K H Liao. Comparing the variations and controlling factors of soil N2O emissions and NO3–-N leaching on tea and bamboo hillslopes. Catena , 2020, 188 : 104463
https://doi.org/10.1016/j.catena.2020.104463
|
| 119 |
W S, Zhang H P, Li S G, Pueppke Y Q, Diao X F, Nie J W, Geng D Q, Chen J P Pang. Nutrient loss is sensitive to land cover changes and slope gradients of agricultural hillsides: evidence from four contrasting pond systems in a hilly catchment. Agricultural Water Management , 2020, 237 : 106165
https://doi.org/10.1016/j.agwat.2020.106165
|
| 120 |
L, Chen X D, Liu Z L, Hua H Q, Xue S C, Mei P, Wang S W Wang. Comparison of nitrogen loss weight in ammonia volatilization, runoff, and leaching between common and slow-release fertilizer in paddy field. Water, Air, and Soil Pollution , 2021, 232( 4): 132
https://doi.org/10.1007/s11270-021-05083-6
|
| 121 |
H B, Yang Y L, Luo D, Zhao R T, Lai K Q, Zhang J F, Liang F J, Shen F Wang. Nitrification-urease inhibitor-biochar-controlled nitrogen leaching with different biogas slurry irrigation intensities. Journal of Agro-Environment Science , 2020, 39(10): 2363–2370 ( in Chinese)
|
| 122 |
Y, Li R, White D L, Chen J B, Zhang B G, Li Y M, Zhang Y F, Huang R Edis. A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecological Modelling , 2007, 203( 3-4): 395–423
https://doi.org/10.1016/j.ecolmodel.2006.12.011
|
| 123 |
M S, Wigmosta L W, Vail D P Lettenmaier. A distributed hydrology-vegetation model for complex terrain. Water Resources Research , 1994, 30( 6): 1665–1679
https://doi.org/10.1029/94WR00436
|
| 124 |
C S, Li W, Salas R H, Zhang C, Krauter A, Rotz F Mitloehner. Manure-DNDC: a biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems. Nutrient Cycling in Agroecosystems , 2012, 93( 2): 163–200
https://doi.org/10.1007/s10705-012-9507-z
|
| 125 |
F, Zhou Z Y, Shang Z Z, Zeng S L, Piao P, Ciais P A, Raymond X H, Wang R, Wang M P, Chen C L, Yang S, Tao Y, Zhao Q, Meng S S, Gao Q Mao. New model for capturing the variations of fertilizer-induced emission factors of N2O. Global Biogeochemical Cycles , 2015, 29( 6): 885–897
https://doi.org/10.1002/2014GB005046
|
| 126 |
X F, Tian C L, Li M, Zhang T, Li Y Y, Lu L F Liu. Controlled release urea improved crop yields and mitigated nitrate leaching under cotton-garlic intercropping system in a 4-year field trial. Soil & Tillage Research , 2018, 175 : 158–167
https://doi.org/10.1016/j.still.2017.08.015
|
| 127 |
H F, Sun S, Zhou J N, Zhang X X, Zhang C Wang. Effects of controlled-release fertilizer on rice grain yield, nitrogen use efficiency, and greenhouse gas emissions in a paddy field with straw incorporation. Field Crops Research , 2020, 253 : 107814
https://doi.org/10.1016/j.fcr.2020.107814
|
| 128 |
B, Pan S K, Lam A, Mosier Y Q, Luo D L Chen. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agriculture, Ecosystems & Environment , 2016, 232 : 283–289
https://doi.org/10.1016/j.agee.2016.08.019
|
| 129 |
Z, Yao W S, Zhang X B, Wang L, Zhang W, Zhang D Y, Liu X P Chen. Agronomic, environmental, and ecosystem economic benefits of controlled-release nitrogen fertilizers for maize production in Southwest China. Journal of Cleaner Production , 2021, 312 : 127611
https://doi.org/10.1016/j.jclepro.2021.127611
|
| 130 |
S K, Lam H, Suter M, Bai C, Walker R, Davies A R, Mosier D Chen. Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture. Science of the Total Environment , 2018, 644 : 1531–1535
https://doi.org/10.1016/j.scitotenv.2018.07.092
pmid: 30743866
|
| 131 |
H, Wang S, Köbke K Dittert. Use of urease and nitrification inhibitors to reduce gaseous nitrogen emissions from fertilizers containing ammonium nitrate and urea. Global Ecology and Conservation , 2020, 22 : e00933
https://doi.org/10.1016/j.gecco.2020.e00933
|
| 132 |
R B, Alexander R A, Smith G E Schwarz. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature , 2000, 403( 6771): 758–761
https://doi.org/10.1038/35001562
pmid: 10693802
|
| 133 |
J C, Finlay G E, Small R W Sterner. Human influences on nitrogen removal in lakes. Science , 2013, 342( 6155): 247–250
https://doi.org/10.1126/science.1242575
pmid: 24115440
|
| 134 |
H Y, Liu C, Meng Y, Wang Y, Li Y Y, Li X L, Liu J S Wu. Establishing the relationship between the integrated multidimensional landscape pattern and stream water quality in subtropical agricultural catchments. Ecological Indicators , 2021, 127 : 107781
https://doi.org/10.1016/j.ecolind.2021.107781
|
| 135 |
J S, Wu Y, Li Y Y, Li R L, Xiao Y, Wang J L, Shen J G, Zhou X, Li X L, Liu P, Luo J, Wang C, Meng M H, Wang J Liu. Controlling mechanisms and technology demonstrations of agricultural non-point source pollution in subtropical catchments. Research of Agricultural Modernization , 2018, 39(06): 1009−1019 ( in Chinese)
|
| 136 |
C, Meng Y Y, Li X G, Xu R, Gao Y, Wang M Y, Zhang J S Wu. A case study on non-point source pollution and environmental carrying capacity of animal raising industry in subtropical watershed. Acta Scientiae Circumstantiae , 2013, 33: 635−643 ( in Chinese)
|
| 137 |
R, Kröger M T, Moore M A, Locke R F, Cullum R W Jr, Steinriede S III, Testa C T, Bryant C M Cooper. Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches. Agricultural Water Management , 2009, 96( 7): 1175–1179
https://doi.org/10.1016/j.agwat.2009.03.002
|
| 138 |
C J Woltemade. Ability of restored wetlands to reduce nitrogen and phosphorus concentrations in agricultural drainage water. Journal of Soil and Water Conservation , 2000, 55( 3): 303–309
|
| 139 |
D A, Kovacic M B, David L E, Gentry K M, Starks R A Cooke. Effectiveness of constructed wetlands in reducing nitrogen and phosphorus export from agricultural tile drainage. Journal of Environmental Quality , 2000, 29( 4): 1262–1274
https://doi.org/10.2134/jeq2000.00472425002900040033x
|
| 140 |
Y Li. Distributed Grid Basin Environmental System Simulation Model and Its Application. Beijing: Science Press, 2017 ( in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|