Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (3) : 407-424    https://doi.org/10.15302/J-FASE-2022448
REVIEW
SOIL NITROGEN CYCLING AND ENVIRONMENTAL IMPACTS IN THE SUBTROPICAL HILLY REGION OF CHINA: EVIDENCE FROM MEASUREMENTS AND MODELING
Jianlin SHEN1,2(), Yong LI3(), Yi WANG1,4, Yanyan LI1, Xiao ZHU1,2, Wenqian JIANG1,2, Yuyuan LI1,2, Jinshui WU1,2
1. Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
4. College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
 Download: PDF(6431 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Soil nitrogen fluxes and influencing factors were reviewed in the subtropical hilly regions.

● Fertilizer application and atmospheric deposition contributed largely to soil nitrogen input.

● High gaseous, runoff and leaching losses of soil nitrogen were measured.

● Soil nitrogen cycles are well modelled with the Catchment Nutrients Management Model.

The subtropical hilly region of China is a region with intensive crop and livestock production, which has resulted in serious N pollution in soil, water and air. This review summarizes the major soil N cycling processes and their influencing factors in rice paddies and uplands in the subtropical hilly region of China. The major N cycling processes include the N fertilizer application in croplands, atmospheric N deposition, biological N fixation, crop N uptake, ammonia volatilization, N2O/NO emissions, nitrogen runoff and leaching losses. The catchment nutrients management model for N cycle modeling and its case studies in the subtropical hilly region were also introduced. Finally, N management practices for improving N use efficiency in cropland, as well as catchment scales are summarized.

Keywords nitrogen cycling      soil nitrogen      nitrogen deposition      greenhouse gases emission      non-point source pollution      nitrogen use efficiency     
Corresponding Author(s): Jianlin SHEN,Yong LI   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 27 April 2022   Online First Date: 02 June 2022    Issue Date: 09 September 2022
 Cite this article:   
Jianlin SHEN,Yong LI,Yi WANG, et al. SOIL NITROGEN CYCLING AND ENVIRONMENTAL IMPACTS IN THE SUBTROPICAL HILLY REGION OF CHINA: EVIDENCE FROM MEASUREMENTS AND MODELING[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 407-424.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2022448
https://academic.hep.com.cn/fase/EN/Y2022/V9/I3/407
Crops N rate (kg·ha−1 N) Method Organic ratio (%) NH3 flux (kg·ha−1 N) Mean NH3 loss rate (%) References
Single rice 300–350 B, DP 28.7–49.4 17.2 [8285]
Early rice 120–220 B, DP 33.2–89.3 29.4 [6,10,16,79]
Late rice 120–270 B, DP 50.4–140.5 35.6 [6,10,16,79]
Tea 0–2600 Furrow 26–92 5.73–48.8 10.6 [12,1719]
Vegetable 200–1500 B 10–75 0.4–55 9.2 [20,21,81]
Fruit 136–570 DP 25–75 7.7–13 5.5 [22,86,87]
Tab.1  Nitrogen fertilizer application and ammonia volatilization
Fig.1  Model structure and data flow of the catchment nutrients management model (CNMM). The structure of the model includes the following parts: (1) hydrology (evaporation and transpiration, snow melting, runoff, infiltration, lateral flow, base flow, stream discharge), (2) soil-water temperature (energy balance), (3) plant growth, (4) plant–soil-water C-N-P Cycling (e.g., SOM decomposition and humification, immobilization, dry/wet N deposition, nitrification, denitrification, plant uptake, CO2-CH4-NH3-NOx-N2O-N2 emissions, leaching), (5) water and C-N-P transport and loss via runoff, lateral flow, base flow and stream flow, and (6) land management (e.g., planting, harvest, tillage, burning, fertilization, irrigation, wastes treatment).
Fig.2  Nitrogen cycles simulated in the catchment nutrients management model.
Fig.3  Production pathways of soil NO, N2O and N2.
Fig.4  Simulated and observed values of soil water content (a), temperature at 5 cm (b), ammonium nitrogen content (c), NO (d), nitrate nitrogen content (e), and N2O (f) emission fluxes of tea plantation soils in the Feiyue catchment.
Fig.5  Catchment nutrients management model simulated and observed values of stream flow (a), groundwater table (b), TN (c) and TP (d) concentrations at the main outlet of Nanyue catchment.
1 and Agriculture Organization of the United Nations (FAO) Food. FAO Statistical Databases. Rome: FAO , 2021. Available at FAO website on August 20, 2021
2 J H, Guo X J, Liu Y, Zhang J L, Shen W X, Han W F, Zhang P, Christie K W T, Goulding P M, Vitousek F S Zhang. Significant acidification in major Chinese croplands. Science , 2010, 327( 5968): 1008–1010
https://doi.org/10.1126/science.1182570 pmid: 20150447
3 B, Gu L, Zhang Dingenen R, Van M, Vieno Grinsven H J, Van X, Zhang S, Zhang Y, Chen S, Wang C, Ren S, Rao M, Holland W, Winiwarter D, Chen J, Xu M A Sutton. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science , 2021, 374( 6568): 758–762
https://doi.org/10.1126/science.abf8623 pmid: 34735244
4 C, Yu X, Huang H, Chen H C J, Godfray J S, Wright J W, Hall P, Gong S, Ni S, Qiao G, Huang Y, Xiao J, Zhang Z, Feng X, Ju P, Ciais N C, Stenseth D O, Hessen Z, Sun L, Yu W, Cai H, Fu X, Huang C, Zhang H, Liu J Taylor. Managing nitrogen to restore water quality in China. Nature , 2019, 567( 7749): 516–520
https://doi.org/10.1038/s41586-019-1001-1 pmid: 30818324
5 X Q, Fu Y, Li W J, Su J L, Shen R L, Xiao C L, Tong J S Wu. Annual dynamics of N2O emissions from a tea field in southern subtropical China. Plant, Soil and Environment , 2012, 58( 8): 373–378
https://doi.org/10.17221/719/2011-PSE
6 J, Liu X, Ouyang J, Shen Y, Li W, Sun W, Jiang J Wu. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Science of the Total Environment , 2020, 715 : 136852
https://doi.org/10.1016/j.scitotenv.2020.136852 pmid: 32041041
7 W Y, Yi J L, Shen G P, Liu J, Wang L F, Yu Y, Li R, Stefan J S Wu. High NH3 deposition in the environs of a commercial fattening pig farm in central south China. Environmental Research Letters , 2021, 16( 12): 125007
https://doi.org/10.1088/1748-9326/ac3603
8 J L, Shen H, Tang J Y, Liu C, Wang Y, Li T D, Ge D L, Jones J S Wu. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agriculture, Ecosystems & Environment , 2014, 188 : 264–274
https://doi.org/10.1016/j.agee.2014.03.002
9 Y, Wang X L, Liu Y, Li F, Liu J L, Shen Y Y, Li Q M, Ma J, Yin J S Wu. Rice agriculture increases base flow contribution to catchment nitrate loading in subtropical central China. Agriculture, Ecosystems & Environment , 2015, 214 : 86–95
https://doi.org/10.1016/j.agee.2015.08.017
10 C, Wang J L, Shen J Y, Liu H L, Qin Q, Yuan F L, Fan Y J, Hu J, Wang W X, Wei Y, Li J Wu. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: a four-year study. Soil Biology & Biochemistry , 2019, 135 : 251–263
https://doi.org/10.1016/j.soilbio.2019.05.012
11 X, Zhu J, Shen Y, Li X, Liu W, Xu F, Zhou J, Wang S, Reis J Wu. Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China. Environmental Pollution , 2021, 289 : 117870
https://doi.org/10.1016/j.envpol.2021.117870 pmid: 34385131
12 D, Chen Y, Li C, Wang X Q, Fu X L, Liu J L, Shen Y, Wang R L, Xiao D L, Liu J S Wu. Measurement and modeling of nitrous and nitric oxide emissions from a tea field in subtropical central China. Nutrient Cycling in Agroecosystems , 2017, 107( 2): 157–173
https://doi.org/10.1007/s10705-017-9826-1
13 D, Zhang H Y, Wang J, Pan J F, Luo J, Liu B J, Gu S, Liu L M, Zhai S, Lindsey Y T, Zhang Q L, Lei S X, Wu P, Smith H B Liu. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agriculture, Ecosystems & Environment , 2018, 265 : 8–14
https://doi.org/10.1016/j.agee.2018.05.023
14 W C, Ding X P, Xu P, He J J, Zhang Z L, Cui W Zhou. Estimating regional N application rates for rice in china based on target yield, indigenous N supply, and N loss. Environmental Pollution , 2020, 263(Pt B): 114408
15 C, Wang J Y, Liu J L, Shen D, Chen Y, Li B S, Jiang J S Wu. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: a 4-year field experiment. Agriculture, Ecosystems & Environment , 2018, 262 : 83–96
https://doi.org/10.1016/j.agee.2018.04.017
16 X M, Zhong X, Zhou J C, Fei Y, Huang G, Wang X R, Kang W F, Hu H R, Zhang X M, Rong J W Peng. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agriculture, Ecosystems & Environment , 2021, 306 : 107183
https://doi.org/10.1016/j.agee.2020.107183
17 W Y, Han J M, Xu K, Wei Y Z, Shi L F Ma. Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China. Environmental Earth Sciences , 2013, 70( 6): 2495–2500
https://doi.org/10.1007/s12665-013-2292-4
18 W, Li F, Xiang L Y, Zhou H Y, Liu Z X Zeng. Effects of nitrogen fertilizer reduction on photosynthesis and nitrogen use efficiency in tea plant. Chinese Journal of Ecology , 2020, 39(1): 93–98 (in Chinese)
19 H L, Li L Y, Wang H, Cheng K, Wei L, Ruan L Y Wu. The effects of nitrogen supply on agronomic traits and chemical components of tea plant. Journal of Tea Science , 2017, 37(4): 383–391 ( in Chinese)
20 M, Zhou S, Ying J, Chen P, Jiang Y Teng. Effects of biochar-based fertilizer on nitrogen use efficiency and nitrogen losses via leaching and ammonia volatilization from an open vegetable field. Environmental Science and Pollution Research International , 2021, 28( 46): 65188–65199
https://doi.org/10.1007/s11356-021-15210-9 pmid: 34227011
21 X L, Li X, Lan Z P, Pan G L, Sun Q L, Tan C X, Hu X C Sun. In fluence of organic fertilizer and adding DMPP on vegetable production and the nitrate leaching. Soil and Fertilizer Sciences in China , 2018, 02: 118−126 ( in Chinese)
22 M Y, Hou L, Zhang Z W, Wang D L, Yang L L, Wang W M, Xiu J N Zhao. Estimation of fertilizer usage from main crops in China. Journal of Agricultural Resources and Environment , 2017, 34(4): 360−367 ( in Chinese)
23 J L, Shen Y, Li X J, Liu X S, Luo H, Tang Y Z, Zhang J S Wu. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China. Atmospheric Environment , 2013, 67 : 415–424
https://doi.org/10.1016/j.atmosenv.2012.10.068
24 H, Wang G, Shi M, Tian Y, Chen B, Qiao L, Zhang F, Yang L, Zhang Q Luo. Wet deposition and sources of inorganic nitrogen in the Three Gorges Reservoir Region, China. Environmental Pollution , 2018, 233 : 520–528
https://doi.org/10.1016/j.envpol.2017.10.085 pmid: 29102882
25 X Q, Ouyang B, Wang J L, Shen X, Zhu J F, Wang Y, Li J S Wu. Atmospheric nitrogen dioxide, nitric acid, nitrate nitrogen concentrations, and wet and dry deposition rates in a double rice region in subtropical China. Environmental Sciences , 2019, 40(6): 2607–2614 ( in Chinese)
pmid: 31854651
26 X, Zhu J F, Wang J L, Shen R L, Xiao J, Wang J S, Wu Y Li. Comparison between atmospheric wet-only and bulk nitrogen depositions at two sites in subtropical China. Environmental Sciences , 2018, 39(6): 2557–2565 ( in Chinese)
27 L, Zhang M, Tian C, Peng C, Fu T, Li Y, Chen Y, Qiu Y, Huang H, Wang Z, Li F Yang. Nitrogen wet deposition in the Three Gorges Reservoir area: characteristics, fluxes, and contributions to the aquatic environment. Science of the Total Environment , 2020, 738 : 140309
https://doi.org/10.1016/j.scitotenv.2020.140309 pmid: 32806348
28 L Y, Zhang B Q, Qiao H B, Wang M, Tian J, Cui C, Fu Y M, Huang F M Yang. Chemical characteristics of precipitation in a typical urban site of the hinterland in Three Gorges Reservoir, China. Journal of Chemistry , 2018, 2018 : 1–10
https://doi.org/10.1155/2018/2914313
29 J, Zhu N, He Q, Wang G, Yuan D, Wen G, Yu Y Jia. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Science of the Total Environment , 2015, 511 : 777–785
https://doi.org/10.1016/j.scitotenv.2014.12.038 pmid: 25617702
30 K, Walaszek M, Kryza A J Dore. The impact of precipitation on wet deposition of sulphur and nitrogen compounds. Ecological Chemistry and Engineering S , 2013, 20( 4): 733–745
https://doi.org/10.2478/eces-2013-0051
31 M, Zheng Z, Zhou Y, Luo P, Zhao J Mo. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: a meta-analysis. Global Change Biology , 2019, 25( 9): 3018–3030
https://doi.org/10.1111/gcb.14705 pmid: 31120621
32 D J, Li Q S, Zhang K C, Xiao Z C, Wang K L Wang. Divergent responses of biological nitrogen fixation in soil, litter and moss to temperature and moisture in a karst forest, southwest China. Soil Biology & Biochemistry , 2018, 118 : 1–7
https://doi.org/10.1016/j.soilbio.2017.11.026
33 Q, Wang J, Wang Y, Li D, Chen J, Ao W, Zhou D, Shen Q, Li Z, Huang Y Jiang. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Science of the Total Environment , 2018, 619-620 : 1530–1537
https://doi.org/10.1016/j.scitotenv.2017.10.064 pmid: 29129329
34 X J, Wang B J, Liu J, Ma Y H, Zhang T L, Hu H, Zhang Y C, Feng H L, Pan Z W, Xu G, Liu X W, Lin J G, Zhu Q C, Bei Z B Xie. Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China. Soil Biology & Biochemistry , 2019, 131 : 81–89
https://doi.org/10.1016/j.soilbio.2018.12.028
35 X M, Zhu W, Zhang H, Chen J M Mo. Impacts of nitrogen deposition on soil nitrogen cycle in forest ecosystems: a review. Acta Ecologica Sinica , 2015, 35( 3): 35–43
https://doi.org/10.1016/j.chnaes.2015.04.004
36 M, Zheng H, Chen D, Li Y, Luo J Mo. Substrate stoichiometry determines nitrogen fixation throughout succession in southern Chinese forests. Ecology Letters , 2020, 23( 2): 336–347
https://doi.org/10.1111/ele.13437 pmid: 31802606
37 D F, Cusack W, Silver W H McDowell. Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems , 2009, 12( 8): 1299–1315
https://doi.org/10.1007/s10021-009-9290-0
38 S C, Reed C C, Cleveland A R Townsend. Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology , 2008, 89( 10): 2924–2934
https://doi.org/10.1890/07-1430.1 pmid: 18959329
39 M H, Zheng H, Chen D J, Li X M, Zhu W, Zhang S L, Fu J M Mo. Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees. Biology and Fertility of Soils , 2016, 52( 5): 665–674
https://doi.org/10.1007/s00374-016-1109-5
40 Y H Tian. Composition and diversity of nitrogen-fixing bacteria in rhizosphere of tea at different ages. Tea of Fujian , 2000, 3: 19−21 ( in Chinese)
41 X Y, Han Z, Li L X, Zhang X Q Huang. Screening, identification and inoculation effect of azotobacter from the soils of tea garden. Journal of Tea Science , 2014, 34(5): 497−505 ( in Chinese)
42 X Y, Han L X, Zhang X Q, Huang Y H, Dong Z, Li T Shang. Effect of nitrogen transformation bacteria on microbial community and nutrient contents in rhizosphere soil of tea plan. Journal of Tea Science , 2015, 35(5): 405–414 ( in Chinese)
43 D F, Herridge M B, Peoples R M Boddey. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil , 2008, 311( 1): 1–18
https://doi.org/10.1007/s11104-008-9668-3
44 Q C, Bei G, Liu H Y, Tang G, Cadisch F, Rasche Z B Xie. Heterotrophic and phototrophic 15N2 fixation and distribution of fixed 15N in a flooded rice-soil system. Soil Biology & Biochemistry , 2013, 59 : 25–31
https://doi.org/10.1016/j.soilbio.2013.01.008
45 C, Wu X, Wei Z, Hu Y, Liu Y, Hu H, Qin X, Chen J, Wu T, Ge M, Zhran Y Su. Diazotrophic community variation underlies differences in nitrogen fixation potential in paddy soils across a climatic gradient in China. Microbial Ecology , 2021, 81( 2): 425–436
https://doi.org/10.1007/s00248-020-01591-w pmid: 32901387
46 A R, Barron N, Wurzburger J P, Bellenger S J, Wright A M L, Kraepiel L O Hedin. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience , 2009, 2( 1): 42–45
https://doi.org/10.1038/ngeo366
47 J, Ma Q, Bei X, Wang P, Lan G, Liu X, Lin Q, Liu Z, Lin B, Liu Y, Zhang H, Jin T, Hu J, Zhu Z Xie. Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. Science of the Total Environment , 2019, 649 : 686–694
https://doi.org/10.1016/j.scitotenv.2018.08.318 pmid: 30176479
48 H, Liao Y, Li H Yao. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. Journal of Soils and Sediments , 2018, 18( 3): 1076–1086
https://doi.org/10.1007/s11368-017-1836-8
49 J, Ma Q C, Bei X J, Wang G, Liu G, Cadisch X W, Lin J G, Zhu X L, Sun Z Xie. Paddy system with a hybrid rice enhances cyanobacteria nostoc and increases N2 fixation. Pedosphere , 2019, 29( 3): 374–387
https://doi.org/10.1016/S1002-0160(19)60809-X
50 Y Z, Chen F, Wang Z D, Wu W J, Zhang B Q, Weng Z M You. Effects of soil nitrogen-fixing bacteria community and diversity after converting forestland into tea garden. Chinese Journal of Applied and Environmental Biology , 2020, 26(5): 1096–1106 ( in Chinese)
51 P, Jiang X B, Xie M, Huang X F, Zhou R C, Zhang J N, Chen D D, Wu B, Xia H, Xiong F X, Xu Y B Zou. Characterizing N uptake and use efficiency in rice as influenced by environments. Plant Production Science , 2016, 19( 1): 96–104
https://doi.org/10.1080/1343943X.2015.1128103
52 J F, Ying S B, Peng G Q, Yang N, Zhou R M, Visperas K G Cassman. Comparison of high-yield rice in tropical and subtropical environments: II. Nitrogen accumulation and utilization efficiency. Field Crops Research , 1998, 57( 1): 85–93
https://doi.org/10.1016/S0378-4290(97)00121-4
53 D L, Kong Y G, Jiu J, Chen K, Yu Y J, Zheng S, Wu S W, Liu J W Zou. Nitrogen use efficiency exhibits a trade-off relationship with soil N2O and NO emissions from wheat-rice rotations receiving manure substitution. Geoderma , 2021, 403 : 115374
https://doi.org/10.1016/j.geoderma.2021.115374
54 M, Wu G L, Li S P, Wei P F, Li M, Liu J, Liu Z P Li. Discrimination of soil productivity and fertilizer-nitrogen use efficiency in the paddy field of subtropical China after 27 years different fertilizations. Archives of Agronomy and Soil Science , 2021, 67( 2): 166–178
https://doi.org/10.1080/03650340.2020.1718114
55 W Y, Han L F, Ma Y Z, Shi J Y, Ruan S J Kemmitt. Nitrogen release dynamics and transformation of slow release fertiliser products and their effects on tea yield and quality. Journal of the Science of Food and Agriculture , 2008, 88( 5): 839–846
https://doi.org/10.1002/jsfa.3160
56 J, Liu B S, Jing J L, Shen X, Zhu W Y, Yi Y, Li J S Wu. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agriculture, Ecosystems & Environment , 2021, 311 : 107286
https://doi.org/10.1016/j.agee.2020.107286
57 M H, Sun B S, Jiang J L, Shen B L, Song Q Y, Li Y, Li J S Wu. The effects of combined application of pig manure and chemical fertilizers on soil nitrogen contents and nitrogen use efficiency in a subtropical paddy field. Research of Agricultural Modernization , 2021, 42(1): 175−183 ( in Chinese)
58 Y H, Tan J L, Shen B S, Jiang Q Y, Li Y, Li J S Wu. The effects of straw incorporation and water management on nitrogen uptake and nitrogen use efficiency in a double rice cropping system. Research of Agricultural Modernization , 2018, 39(3): 511–519 ( in Chinese)
59 W H, Mi S Y, Zheng X, Yang L H, Wu Y L, Liu J Q Chen. Comparison of yield and nitrogen use efficiency of different types of nitrogen fertilizers for different rice cropping systems under subtropical monsoon climate in China. European Journal of Agronomy , 2017, 90 : 78–86
https://doi.org/10.1016/j.eja.2017.07.013
60 X X, Li J, Cao J K, Huang D Y, Xing S B Peng. Effects of topsoil removal on nitrogen uptake, biomass accumulation, and yield formation in puddled-transplanted rice. Field Crops Research , 2021, 265 : 108130
https://doi.org/10.1016/j.fcr.2021.108130
61 Y, Chen X, Tang S M, Yang C Y, Wu J Y Wang. Contributions of different N sources to crop N nutrition in a Chinese rice field. Pedosphere , 2010, 20( 2): 198–208
https://doi.org/10.1016/S1002-0160(10)60007-0
62 P, Liao S, Huang Gestel N C, van Y J, Zeng Z M, Wu Groenigen K J van. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Research , 2018, 216 : 217–224
https://doi.org/10.1016/j.fcr.2017.11.026
63 M, Wu G, Li W, Li J, Liu M, Liu C, Jiang Z Li. Nitrogen fertilizer deep placement for increased grain yield and nitrogen recovery efficiency in rice grown in subtropical China. Frontiers in Plant Science , 2017, 8 : 1227
https://doi.org/10.3389/fpls.2017.01227 pmid: 28744302
64 X M, Zhong J W, Peng X R, Kang Y F, Wu G W, Luo W F, Hu X Zhou. Optimizing agronomic traits and increasing economic returns of machine-transplanted rice with side-deep fertilization of double-cropping rice system in southern China. Field Crops Research , 2021, 270 : 108191
https://doi.org/10.1016/j.fcr.2021.108191
65 H, Liang S, Li L, Zhang C X, Xu Y H, Lv S J, Gao W D Cao. Long-term green manuring enhances crop N uptake and reduces N losses in rice production system. Soil & Tillage Research , 2022, 220 : 105369
https://doi.org/10.1016/j.still.2022.105369
66 B A, Linquist L J, Liu Kessel C, van Groenigen K J van. Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crops Research , 2013, 154 : 246–254
https://doi.org/10.1016/j.fcr.2013.08.014
67 P F, Li J W, Lu Y, Wang S, Wang S, Hussain T, Ren R H, Cong X Li. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agriculture, Ecosystems & Environment , 2018, 251 : 78–87
https://doi.org/10.1016/j.agee.2017.09.020
68 Y, Wu Y, Li X, Fu J, Shen D, Chen Y, Wang X, Liu R, Xiao W, Wei J Wu. Effect of controlled-release fertilizer on N2O emissions and tea yield from a tea field in subtropical central China. Environmental Science and Pollution Research , 2018, 25( 25): 25580–25590
https://doi.org/10.1007/s11356-018-2646-2 pmid: 29959739
69 P, Yan L, Wu D, Wang J, Fu C, Shen X, Li L, Zhang L, Zhang L, Fan H Wenyan. Soil acidification in Chinese tea plantations. Science of the Total Environment , 2020, 715 : 136963
https://doi.org/10.1016/j.scitotenv.2020.136963 pmid: 32014781
70 W, Xu L, Zhang X Liu. A database of atmospheric nitrogen concentration and deposition from the nationwide monitoring network in China. Scientific Data , 2019, 6( 1): 51
https://doi.org/10.1038/s41597-019-0061-2 pmid: 31073123
71 W, Adalibieke X, Zhan X, Cui S, Reis W, Winiwarter F Zhou. Decoupling between ammonia emission and crop production in China due to policy interventions. Global Change Biology , 2021, 27( 22): 5877–5888
https://doi.org/10.1111/gcb.15847 pmid: 34403176
72 X, Zhan W, Adalibieke X, Cui W, Winiwarter S, Reis L, Zhang Z, Bai Q, Wang W, Huang F Zhou. Improved estimates of ammonia emissions from global croplands. Environmental Science & Technology , 2021, 55( 2): 1329–1338
https://doi.org/10.1021/acs.est.0c05149 pmid: 33378621
73 Y, Jiang A X, Deng S, Bloszies S, Huang W J Zhang. Nonlinear response of soil ammonia emissions to fertilizer nitrogen. Biology and Fertility of Soils , 2017, 53( 3): 269–274
https://doi.org/10.1007/s00374-017-1175-3
74 H, Wang D, Zhang Y, Zhang L, Zhai B, Yin F, Zhou Y, Geng J, Pan J, Luo B, Gu H Liu. Ammonia emissions from paddy fields are underestimated in China. Environmental Pollution , 2018, 235 : 482–488
https://doi.org/10.1016/j.envpol.2017.12.103 pmid: 29324377
75 X, Zhang Y, Wu X, Liu S, Reis J, Jin U, Dragosits Damme M, Van L, Clarisse S, Whitburn P F, Coheur B Gu. Ammonia emissions may be substantially underestimated in China. Environmental Science & Technology , 2017, 51( 21): 12089–12096
https://doi.org/10.1021/acs.est.7b02171 pmid: 28984130
76 S, Huang W S, Lv S, Bloszies Q H, Shi X H, Pan Y J Zeng. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: a meta-analysis. Field Crops Research , 2016, 192 : 118–125
https://doi.org/10.1016/j.fcr.2016.04.023
77 Y L, Yao M, Zhang Y H, Tian M, Zhao K, Zeng B W, Zhang M, Zhao B Yin. Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crops Research , 2018, 216 : 158–164
https://doi.org/10.1016/j.fcr.2017.11.020
78 G, Yang H, Ji J, Sheng Y, Zhang Y, Feng Z, Guo L Chen. Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Science of the Total Environment , 2020, 743 : 140799
https://doi.org/10.1016/j.scitotenv.2020.140799 pmid: 32673926
79 J, Zhu L H, Shi F X, Tian L J, Huo X H Ji. Responses of ammonia volatilization to nitrogen application amount in typical double cropping paddy fields in Hunan Province. Journal of Plant Nutrition and Fertilizers , 2013, 19(5): 1129−1138 ( in Chinese)
80 J, Zhou J, Cui G Q, Wang Y Q, He Y H Ma. Ammonia volatilization in relation to N application rate and climate factors in upland red soil in spring and autumn. Acta Pedologica Sinica , 2007, (03): 499−506 ( in Chinese)
81 L, Shan Y, He J, Chen Q, Huang H Wang. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Journal of Environmental Sciences , 2015, 38 : 14–23
https://doi.org/10.1016/j.jes.2015.04.028 pmid: 26702964
82 D X, Lin X H, Fan F, Hu H T, Zhao J F Luo. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake Region, China. Pedosphere , 2007, 17( 5): 639–645
https://doi.org/10.1016/S1002-0160(07)60076-9
83 Z S, Yao X H, Zheng C Y, Liu R, Wang B H, Xie K Butterbach-Bahl. Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China. Agricultural and Forest Meteorology , 2018, 248 : 386–396
https://doi.org/10.1016/j.agrformet.2017.10.020
84 T Q, Liu C F, Li W F, Tan J P, Wang J H, Feng Q Y, Hu C G Cao. Rice-crayfish co-culture reduces ammonia volatilization and increases rice nitrogen uptake in central China. Agriculture, Ecosystems & Environment , 2022, 330 : 107869
https://doi.org/10.1016/j.agee.2022.107869
85 J S, Zhang F P, Zhang J H, Yang J P, Wang M L, Cai C F, Li C G Cao. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agriculture, Ecosystems & Environment , 2011, 140( 1-2): 164–173
86 Y, Zhang J, Luo F, Peng Y, Xiao A Du. Application of bag-controlled release fertilizer facilitated new root formation, delayed leaf, and root senescence in peach trees and improved nitrogen utilization efficiency. Frontiers in Plant Science , 2021, 12 : 627313
https://doi.org/10.3389/fpls.2021.627313 pmid: 33868330
87 Y Q, Xia S Q, Wang P F, Sun X Q, Chen J L, Shen H, Wang Z H, Xiao X M, Li G, Yang X Y Yan. Ammonia emission patterns of typical planting systems in the middle and lower reaches of the Yangtze River and key technologies for ammonia emission reduction. Chinese Journal of Eco-Agriculture , 2021, 29(12): 1981−1989 ( in Chinese)
88 X Q, Cui F, Zhou P, Ciais E A, Davidson F N, Tubiello X, Niu X T, Ju J G, Canadell A F, Bouwman R B, Jackson N D, Mueller X H, Zheng D R, Kanter H Q, Tian W, Adelibieke Y, Bo Q H, Wang X Y, Zhan D Q Zhu. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food , 2021, 2( 11): 886–893
https://doi.org/10.1038/s43016-021-00384-9
89 Y, Liu Q, Jiang Y, Sun Y, Jian F Zhou. Decline in nitrogen concentrations of eutrophic Lake Dianchi associated with policy interventions during 2002−2018. Environmental Pollution , 2021, 288 : 117826
https://doi.org/10.1016/j.envpol.2021.117826 pmid: 34329052
90 J, Wang P S, Xu , Li T, Z S W, Liu J W Zou. Differential responses of soil nitrogen-oxide emissions to organic substitution for synthetic fertilizer and biochar amendment in a subtropical tea plantation. Global Change Biology Bioenergy , 2021, 13 : 1260–1274
91 Y, Zhang H, Ding X, Zheng X, Ren L, Cardenas A, Carswell T Misselbrook. Land-use type affects N2O production pathways in subtropical acidic soils. Environmental Pollution , 2018, 237 : 237–243
https://doi.org/10.1016/j.envpol.2018.02.045 pmid: 29486457
92 T B, Zhu J B, Zhang T Z, Meng Y C, Zhang J J, Yang C, Müller Z C Cai. Tea plantation destroys soil retention of NO3− and increases N2O emissions in subtropical China. Soil Biology & Biochemistry , 2014, 73 : 106–114
https://doi.org/10.1016/j.soilbio.2014.02.016
93 C, Ji S Q, Li Y J, Geng Y M, Yuan J Z, Zhi K, Yu Z Q, Han S, Wu S W, Liu J W Zou. Decreased N2O and NO emissions associated with stimulated denitrification following biochar amendment in subtropical tea plantations. Geoderma , 2020, 365 : 114223
https://doi.org/10.1016/j.geoderma.2020.114223
94 M H, Zhou X G, Wang Y Q, Wang B Zhu. A three-year experiment of annual methane and nitrous oxide emissions from the subtropical permanently flooded rice paddy fields of China: Emission factor, temperature sensitivity and fertilizer nitrogen effect. Agricultural and Forest Meteorology , 2018, 250−251: 299−307
95 Panel on Climate Change (IPCC) Intergovernmental. 2006 IPCC guidelines for national greenhouse gas inventories volume 4: agriculture, forestry, and other land use. IPCC , 2006
96 W, Jiang W, Huang H, Liang Y, Wu X, Shi J, Fu Q, Wang K, Hu L, Chen H, Liu F Zhou. Is rice field a nitrogen source or sink for the environment. Environmental Pollution , 2021, 283 : 117122
https://doi.org/10.1016/j.envpol.2021.117122 pmid: 33872939
97 M H, Zhou B, Zhu X G, Wang Y Q Wang. Long-term field measurements of annual methane and nitrous oxide emissions from a Chinese subtropical wheat-rice rotation system. Soil Biology & Biochemistry , 2017, 115 : 21–34
https://doi.org/10.1016/j.soilbio.2017.08.005
98 S, Lin J, Iqbal R G, Hu M L N Feng. 2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems & Environment , 2010, 136( 1-2): 40–48
https://doi.org/10.1016/j.agee.2009.11.005
99 Y, Zhang W, Zhao Z, Cai C, Müller J Zhang. Heterotrophic nitrification is responsible for large rates of N2O emission from subtropical acid forest soil in China. European Journal of Soil Science , 2018, 69( 4): 646–654
https://doi.org/10.1111/ejss.12557
100 Q L, Zhuang Y Y, Lu C Min. An inventory of global N2O emissions from the soils of natural terrestrial ecosystems. Atmospheric Environment , 2012, 47 : 66–75
https://doi.org/10.1016/j.atmosenv.2011.11.036
101 Y, Wang S, Cheng H, Fang G, Yu M, Xu X, Dang L, Li L Wang. Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China. PLoS One , 2014, 9( 4): e93571
https://doi.org/10.1371/journal.pone.0093571 pmid: 24714387
102 D N, Xie G Y, Si T, Zhang J, Mulder L Duan. Nitrogen deposition increases N2O emission from an N-saturated subtropical forest in southwest China . Environmental Pollution , 2018, 243, part B: 1818–1824
103 Y B, Xu Z C Cai. Denitrification characteristics of subtropical soils in China affected by soil parent material and land use. European Journal of Soil Science , 2007, 58( 6): 1293–1303
https://doi.org/10.1111/j.1365-2389.2007.00923.x
104 A, Yamamoto H, Akiyama T, Naokawa Y, Miyazaki Y, Honda Y, Sano Y, Nakajima K Yagi. Lime-nitrogen application affects nitrification, denitrification, and N2O emission in an acidic tea soil. Biology and Fertility of Soils , 2014, 50( 1): 53–62
https://doi.org/10.1007/s00374-013-0830-6
105 Y, Huang X, Xiao X Long. Fungal denitrification contributes significantly to N2O production in a highly acidic tea soil. Journal of Soils and Sediments , 2017, 17( 6): 1599–1606
https://doi.org/10.1007/s11368-017-1655-y
106 Y, Zhang W, Zhao J B, Zhang Z C N Cai. 2O production pathways relate to land use type in acidic soils in subtropical China. Journal of Soils and Sediments , 2017, 17( 2): 306–314
https://doi.org/10.1007/s11368-016-1554-7
107 Y, Cheng J, Wang J B, Zhang C, Müller S Q Wang. Mechanistic insights into the effects of N fertilizer application on N2O-emission pathways in acidic soil of a tea plantation. Plant and Soil , 2015, 389( 1−2): 45–57
https://doi.org/10.1007/s11104-014-2343-y
108 H C, Yang R, Sheng Z X, Zhang L, Wang Q, Wang W X Wei. Responses of nitrifying and denitrifying bacteria to flooding-drying cycles in flooded rice soil. Applied Soil Ecology , 2016, 103 : 101–109
https://doi.org/10.1016/j.apsoil.2016.03.008
109 X H, Zheng Y, Huang Y S, Wang M X Wang. Seasonal characteristics of nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology , 2003, 9( 2): 219–227
https://doi.org/10.1046/j.1365-2486.2003.00586.x
110 X, Wu H F, Liu B J, Fu Q, Wang M, Xu H M, Wang F T, Yang G H Liu. Effects of land-use change and fertilization on N2O and NO fluxes, the abundance of nitrifying and denitrifying microbial communities in a hilly red soil region of southern China. Applied Soil Ecology , 2017, 120 : 111–120
https://doi.org/10.1016/j.apsoil.2017.08.004
111 D L, Kong Y G, Jin K, Yu D P, Swaney S W, Liu J W Zou. Low N2O emissions from wheat in a wheat-rice double cropping system due to manure substitution are associated with changes in the abundance of functional microbes. Agriculture, Ecosystems & Environment , 2021, 311 : 107318
https://doi.org/10.1016/j.agee.2021.107318
112 H J, Zheng Z, Liu X F, Nie J C, Zuo L Y Wang. Comparison of active nitrogen loss in four pathways on a sloped peanut field with red soil in China under conventional fertilization conditions. Sustainability , 2019, 11( 22): 6219
https://doi.org/10.3390/su11226219
113 Y, Dong J L, Yang X R, Zhao S H, Yang J, Mulder P, Dörsch G L Zhang. Nitrate runoff loss and source apportionment in a typical subtropical agricultural watershed. Environmental Science and Pollution Research International , 2022, 29( 14): 20186–20199
https://doi.org/10.1007/s11356-021-16935-3 pmid: 34725759
114 Y, Dong J L, Yang X R, Zhao S H, Yang J, Mulder P, Dörsch G L Zhang. Nitrate leaching and N accumulation in a typical subtropical red soil with N fertilization. Geoderma , 2022, 407 : 115559
https://doi.org/10.1016/j.geoderma.2021.115559
115 K Y, Yang M H, Wang Y, Wang L M, Yin Y, Li J S Wu. Characteristics and determinants of nitrogen and phosphorus runoff losses under different agronomic measures in double cropping paddy fields. Journal of Agro-Environment Science , 2019, 38(08): 1723–1734 ( in Chinese)
116 H, Zhao X Y, Li Y Jiang. Response of nitrogen losses to excessive nitrogen fertilizer application in intensive greenhouse vegetable production. Sustainability , 2019, 11( 6): 1513
https://doi.org/10.3390/su11061513
117 Q Tang. The study of characteristics of nitrogen loss in agricultural non-point pollution in different soil types and different rainfall intensity. Dissertation for the Master’s degree. Chengdu, China: Southwest Jiaotong University , 2017 ( in Chinese)
118 Z W, Zhou Y, Liu Q, Zhu X M, Lai K H Liao. Comparing the variations and controlling factors of soil N2O emissions and NO3–-N leaching on tea and bamboo hillslopes. Catena , 2020, 188 : 104463
https://doi.org/10.1016/j.catena.2020.104463
119 W S, Zhang H P, Li S G, Pueppke Y Q, Diao X F, Nie J W, Geng D Q, Chen J P Pang. Nutrient loss is sensitive to land cover changes and slope gradients of agricultural hillsides: evidence from four contrasting pond systems in a hilly catchment. Agricultural Water Management , 2020, 237 : 106165
https://doi.org/10.1016/j.agwat.2020.106165
120 L, Chen X D, Liu Z L, Hua H Q, Xue S C, Mei P, Wang S W Wang. Comparison of nitrogen loss weight in ammonia volatilization, runoff, and leaching between common and slow-release fertilizer in paddy field. Water, Air, and Soil Pollution , 2021, 232( 4): 132
https://doi.org/10.1007/s11270-021-05083-6
121 H B, Yang Y L, Luo D, Zhao R T, Lai K Q, Zhang J F, Liang F J, Shen F Wang. Nitrification-urease inhibitor-biochar-controlled nitrogen leaching with different biogas slurry irrigation intensities. Journal of Agro-Environment Science , 2020, 39(10): 2363–2370 ( in Chinese)
122 Y, Li R, White D L, Chen J B, Zhang B G, Li Y M, Zhang Y F, Huang R Edis. A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecological Modelling , 2007, 203( 3-4): 395–423
https://doi.org/10.1016/j.ecolmodel.2006.12.011
123 M S, Wigmosta L W, Vail D P Lettenmaier. A distributed hydrology-vegetation model for complex terrain. Water Resources Research , 1994, 30( 6): 1665–1679
https://doi.org/10.1029/94WR00436
124 C S, Li W, Salas R H, Zhang C, Krauter A, Rotz F Mitloehner. Manure-DNDC: a biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems. Nutrient Cycling in Agroecosystems , 2012, 93( 2): 163–200
https://doi.org/10.1007/s10705-012-9507-z
125 F, Zhou Z Y, Shang Z Z, Zeng S L, Piao P, Ciais P A, Raymond X H, Wang R, Wang M P, Chen C L, Yang S, Tao Y, Zhao Q, Meng S S, Gao Q Mao. New model for capturing the variations of fertilizer-induced emission factors of N2O. Global Biogeochemical Cycles , 2015, 29( 6): 885–897
https://doi.org/10.1002/2014GB005046
126 X F, Tian C L, Li M, Zhang T, Li Y Y, Lu L F Liu. Controlled release urea improved crop yields and mitigated nitrate leaching under cotton-garlic intercropping system in a 4-year field trial. Soil & Tillage Research , 2018, 175 : 158–167
https://doi.org/10.1016/j.still.2017.08.015
127 H F, Sun S, Zhou J N, Zhang X X, Zhang C Wang. Effects of controlled-release fertilizer on rice grain yield, nitrogen use efficiency, and greenhouse gas emissions in a paddy field with straw incorporation. Field Crops Research , 2020, 253 : 107814
https://doi.org/10.1016/j.fcr.2020.107814
128 B, Pan S K, Lam A, Mosier Y Q, Luo D L Chen. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agriculture, Ecosystems & Environment , 2016, 232 : 283–289
https://doi.org/10.1016/j.agee.2016.08.019
129 Z, Yao W S, Zhang X B, Wang L, Zhang W, Zhang D Y, Liu X P Chen. Agronomic, environmental, and ecosystem economic benefits of controlled-release nitrogen fertilizers for maize production in Southwest China. Journal of Cleaner Production , 2021, 312 : 127611
https://doi.org/10.1016/j.jclepro.2021.127611
130 S K, Lam H, Suter M, Bai C, Walker R, Davies A R, Mosier D Chen. Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture. Science of the Total Environment , 2018, 644 : 1531–1535
https://doi.org/10.1016/j.scitotenv.2018.07.092 pmid: 30743866
131 H, Wang S, Köbke K Dittert. Use of urease and nitrification inhibitors to reduce gaseous nitrogen emissions from fertilizers containing ammonium nitrate and urea. Global Ecology and Conservation , 2020, 22 : e00933
https://doi.org/10.1016/j.gecco.2020.e00933
132 R B, Alexander R A, Smith G E Schwarz. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature , 2000, 403( 6771): 758–761
https://doi.org/10.1038/35001562 pmid: 10693802
133 J C, Finlay G E, Small R W Sterner. Human influences on nitrogen removal in lakes. Science , 2013, 342( 6155): 247–250
https://doi.org/10.1126/science.1242575 pmid: 24115440
134 H Y, Liu C, Meng Y, Wang Y, Li Y Y, Li X L, Liu J S Wu. Establishing the relationship between the integrated multidimensional landscape pattern and stream water quality in subtropical agricultural catchments. Ecological Indicators , 2021, 127 : 107781
https://doi.org/10.1016/j.ecolind.2021.107781
135 J S, Wu Y, Li Y Y, Li R L, Xiao Y, Wang J L, Shen J G, Zhou X, Li X L, Liu P, Luo J, Wang C, Meng M H, Wang J Liu. Controlling mechanisms and technology demonstrations of agricultural non-point source pollution in subtropical catchments. Research of Agricultural Modernization , 2018, 39(06): 1009−1019 ( in Chinese)
136 C, Meng Y Y, Li X G, Xu R, Gao Y, Wang M Y, Zhang J S Wu. A case study on non-point source pollution and environmental carrying capacity of animal raising industry in subtropical watershed. Acta Scientiae Circumstantiae , 2013, 33: 635−643 ( in Chinese)
137 R, Kröger M T, Moore M A, Locke R F, Cullum R W Jr, Steinriede S III, Testa C T, Bryant C M Cooper. Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches. Agricultural Water Management , 2009, 96( 7): 1175–1179
https://doi.org/10.1016/j.agwat.2009.03.002
138 C J Woltemade. Ability of restored wetlands to reduce nitrogen and phosphorus concentrations in agricultural drainage water. Journal of Soil and Water Conservation , 2000, 55( 3): 303–309
139 D A, Kovacic M B, David L E, Gentry K M, Starks R A Cooke. Effectiveness of constructed wetlands in reducing nitrogen and phosphorus export from agricultural tile drainage. Journal of Environmental Quality , 2000, 29( 4): 1262–1274
https://doi.org/10.2134/jeq2000.00472425002900040033x
140 Y Li. Distributed Grid Basin Environmental System Simulation Model and Its Application. Beijing: Science Press, 2017 ( in Chinese)
[1] Tom MISSELBROOK, Zhaohai BAI, Zejiang CAI, Weidong CAO, Alison CARSWELL, Nicholas COWAN, Zhenling CUI, David CHADWICK, Bridget EMMETT, Keith GOULDING, Rui JIANG, Davey JONES, Xiaotang JU, Hongbin LIU, Yuelai LU, Lin MA, David POWLSON, Robert M. REES, Ute SKIBA, Pete SMITH, Roger SYLVESTER-BRADLEY, John WILLIAMS, Lianhai WU, Minggang XU, Wen XU, Fusuo ZHANG, Junling ZHANG, Jianbin ZHOU, Xuejun LIU. PROGRESS ON IMPROVING AGRICULTURAL NITROGEN USE EFFICIENCY: UK-CHINA VIRTUAL JOINT CENTERS ON NITROGEN AGRONOM[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 475-489.
[2] Enzai DU, Nan XIA, Yuying GUO, Yuehan TIAN, Binghe LI, Xuejun LIU, Wim de VRIES. ECOLOGICAL EFFECTS OF NITROGEN DEPOSITION ON URBAN FORESTS: AN OVERVIEW[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 445-456.
[3] Cathryn A. O'SULLIVAN, Elliott G. DUNCAN, Margaret M. ROPER, Alan E. RICHARDSON, John A. KIRKEGAARD, Mark B. PEOPLES. ROOT EXUDATES FROM CANOLA EXHIBIT BIOLOGICAL NITRIFICATION INHIBITION AND ARE EFFECTIVE IN INHIBITING AMMONIA OXIDATION IN SOIL[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 177-186.
[4] Emily C. COOLEDGE, David R. CHADWICK, Lydia M. J. SMITH, Jonathan R. LEAKE, Davey L. JONES. AGRONOMIC AND ENVIRONMENTAL BENEFITS OF REINTRODUCING HERB- AND LEGUME-RICH MULTISPECIES LEYS INTO ARABLE ROTATIONS: A REVIEW[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 245-271.
[5] Solomon Tulu TADESSE, Oene OENEMA, Christy van BEEK, Fikre Lemessa OCHO. EXPLORING THE RECYCLING OF MANURE FROM URBAN LIVESTOCK FARMS: A CASE STUDY IN ETHIOPIA[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 159-174.
[6] Haiyan REN, Jie QIN, Baolong YAN, Alata, Baoyinhexige, Guodong HAN. Mass loss and nutrient dynamics during litter decomposition in response to warming and nitrogen addition in a desert steppe[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 64-70.
[7] Jianchang YANG. Approaches to achieve high grain yield and high resource use efficiency in rice[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 115-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed