Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (3) : 373-385    https://doi.org/10.15302/J-FASE-2022455
REVIEW
SUSTAINABLE NITROGEN MANAGEMENT FOR VEGETABLE PRODUCTION IN CHINA
Fen ZHANG1,2, Xiaopeng GAO3, Junjie WANG1,2, Fabo LIU1,2, Xiao MA1,2, Hailin CAO1,2, Xinping CHEN1,2, Xiaozhong WANG1,2()
1. College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
2. Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
3. Department of Soil Science, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
 Download: PDF(3154 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Sustainable nitrogen management strategies for Chinese vegetable production are summarized.

● Research on reactive N (Nr) losses in Chinese vegetable systems is limited compared to cereal crop systems.

● Knowledge-based optimization of N fertilizer rate strategy maintains soil N supply to meet the dynamic vegetable demand in time, space and quantity.

● Innovative products and technology strategy regulates the soil N forms and promotes the vegetable root growth to further control the Nr loss.

● Integrated knowledge and products strategy is needed to produce more vegetables with lower Nr losses.

Inappropriate nitrogen fertilizer management for the intensive Chinese vegetable production has caused low N use efficiency (NUE), high reactive nitrogen (Nr) losses and serious environmental risks with limited yield increase. Innovative N management strategy is an urgent need to achieve sustainable vegetable production. This paper summarizes recent studies on Nr losses and identifies the limitations from Chinese vegetable production systems and proposes three steps for sustainable N management in Chinese vegetable production. The three N management steps include, but are not limited to, (1) knowledge-based optimization of N fertilizer rate strategy, which maintains soil N supply to meet the dynamic vegetable demand in time, space and quantity; (2) innovative products and technology, which regulates the soil N forms and promotes the vegetable root growth to reduce the Nr loss; (3) integrated knowledge and products strategy (IKPS). The knowledge-based optimization of N fertilizer rate strategy and innovative products and technology, can maintain or increase vegetable yield, significantly improve NUE, and mitigate the region-specific and crop-specific Nr losses. More importantly, IKPS, based on combination of in-season root-zone N management strategy, innovative products and technology, and best crop cultivation management, is needed to produce more vegetables with lower Nr losses.

Keywords enhanced-efficiency nitrogen fertilizer      integrated knowledge and products strategy      nitrogen rate      reactive nitrogen loss      vegetable      yield     
Corresponding Author(s): Xiaozhong WANG   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 30 June 2022   Online First Date: 20 July 2022    Issue Date: 09 September 2022
 Cite this article:   
Fen ZHANG,Xiaopeng GAO,Junjie WANG, et al. SUSTAINABLE NITROGEN MANAGEMENT FOR VEGETABLE PRODUCTION IN CHINA[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 373-385.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2022455
https://academic.hep.com.cn/fase/EN/Y2022/V9/I3/373
Fig.1  Number of publications on Nr losses (N2O emission, NH3 volatilization, N leaching and N runoff) from maize (a) and vegetable (b) production during 2000–2021. Publications were identified via systematic searches of Web of Science and China National Knowledge Infrastructure databases.
Fig.2  Crop yield and reactive N loss for cereal (a) and vegetable (b) production systems in response to different N management strategies. S1, knowledge-based optimization of N fertilizer rate strategy; S2, innovative products and technology strategy; and S3, integrated knowledge and products strategy.
Fig.3  Sustainable N management strategies for vegetable production in China.
1 A, Septembre-Malaterre F, Remize P Poucheret. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: changes in bioactive compounds during lactic fermentation. Food Research International , 2018, 104 : 86–99
https://doi.org/10.1016/j.foodres.2017.09.031 pmid: 29433787
2 National Bureau of Statistics of China (NBSC). China statistical yearbook. Beijing: China Statistics Press, 2019
3 Food and Agriculture Organization of the United Nations (FAO). FAO statistical yearbook. Rome: FAO, 2019. Available at FAO website on December 18, 2021
4 F, Tei Neve S, De Haan J, de H L Kristensen. Nitrogen management of vegetable crops. Agricultural Water Management , 2020, 240 : 106316
https://doi.org/10.1016/j.agwat.2020.106316
5 X, Zhang E A, Davidson D L, Mauzerall T D, Searchinger P, Dumas Y Shen. Managing nitrogen for sustainable development. Nature , 2015, 528( 7580): 51–59
https://doi.org/10.1038/nature15743 pmid: 26595273
6 Q, Chen X, Zhang H, Zhang P, Christie X, Li D, Horlacher H Liebig. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region. Nutrient Cycling in Agroecosystems , 2004, 69( 1): 51–58
https://doi.org/10.1023/B:FRES.0000025293.99199.ff
7 Q, Zhang Y, Chu Y, Xue H, Ying X, Chen Y, Zhao W, Ma L, Ma J, Zhang Y, Yin Z Cui. Outlook of China’s agriculture transforming from smallholder operation to sustainable production. Global Food Security , 2020, 26 : 100444
https://doi.org/10.1016/j.gfs.2020.100444
8 F, Zhang F B, Liu X, Ma G Z, Guo B, Liu T H, Cheng T, Liang W L, Tao X P, Chen X Z Wang. Greenhouse gas emissions from vegetables production in China. Journal of Cleaner Production , 2021, 317 : 128449
https://doi.org/10.1016/j.jclepro.2021.128449
9 X, Chen Z, Cui M, Fan P, Vitousek M, Zhao W, Ma Z, Wang W, Zhang X, Yan J, Yang X, Deng Q, Gao Q, Zhang S, Guo J, Ren S, Li Y, Ye Z, Wang J, Huang Q, Tang Y, Sun X, Peng J, Zhang M, He Y, Zhu J, Xue G, Wang L, Wu N, An L, Wu L, Ma W, Zhang F Zhang. Producing more grain with lower environmental costs. Nature , 2014, 514( 7523): 486–489
https://doi.org/10.1038/nature13609 pmid: 25186728
10 United States Department of Agriculture (USDA). Agriculture-Data and statistics . USDA , 2011. Available at USDA website on December 18, 2021
11 C, Ti Y, Luo X Yan. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China. Environmental Science and Pollution Research International , 2015, 22( 23): 18508–18518
https://doi.org/10.1007/s11356-015-5277-x pmid: 26336846
12 F, Beeckman H, Motte T Beeckman. Nitrification in agricultural soils: impact, actors and mitigation. Current Opinion in Biotechnology , 2018, 50 : 166–173
https://doi.org/10.1016/j.copbio.2018.01.014 pmid: 29414056
13 K M, Carlson J S, Gerber N D, Mueller M, Herrero G K, MacDonald K A, Brauman P, Havlik Connell C S, O’ J A, Johnson S, Saatchi P C West. Greenhouse gas emissions intensity of global croplands. Nature Climate Change , 2017, 7( 1): 63–68
https://doi.org/10.1038/nclimate3158
14 X, Wang B, Liu G, Wu Y, Sun X, Guo G, Jin Z, Jin C, Zou D, Chadwick X Chen. Cutting carbon footprints of vegetable production with integrated soil-crop system management: A case study of greenhouse pepper production. Journal of Cleaner Production , 2020, 254 : 120158
https://doi.org/10.1016/j.jclepro.2020.120158
15 E K, Lee X, Zhang P R, Adler G S, Kleppel X X Romeiko. Spatially and temporally explicit life cycle global warming, eutrophication, and acidification impacts from corn production in the U.S. Midwest. Journal of Cleaner Production , 2020, 242 : 118465
https://doi.org/10.1016/j.jclepro.2019.118465
16 J H, Guo X J, Liu Y, Zhang J L, Shen W X, Han W F, Zhang P, Christie K W T, Goulding P M, Vitousek F S Zhang. Significant acidification in major Chinese croplands. Science , 2010, 327( 5968): 1008–1010
https://doi.org/10.1126/science.1182570 pmid: 20150447
17 W, Shi J, Yao F Yan. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China. Nutrient Cycling in Agroecosystems , 2009, 83( 1): 73–84
https://doi.org/10.1007/s10705-008-9201-3
18 X Z, Wang Z X, Dou X J, Shi C Q, Zou D Y, Liu Z Y, Wang X L, Guan Y X, Sun G, Wu B G, Zhang J L, Li B, Liang L, Tang L H, Jiang Z M, Sun J G, Yang D X, Si H, Zhao B, Liu W, Zhang F, Zhang F S, Zhang X P Chen. Innovative management programme reduces environmental impacts in Chinese vegetable production. Nature Food , 2021, 2( 1): 47–53
https://doi.org/10.1038/s43016-020-00199-0
19 L, Ma Z, Bai W, Ma M, Guo R, Jiang J, Liu O, Oenema G L, Velthof A P, Whitmore J, Crawford A, Dobermann M, Schwoob F Zhang. Exploring future food provision scenarios for China. Environmental Science & Technology , 2019, 53( 3): 1385–1393
https://doi.org/10.1021/acs.est.8b04375 pmid: 30609901
20 J, Shen Q, Zhu X, Jiao H, Ying H, Wang X, Wen W, Xu T, Li W, Cong X, Liu Y, Hou Z, Cui O, Oenema W J, Davies F Zhang. Agriculture green development: a model for China and the world. Frontiers of Agricultural Science and Engineering , 2020, 7( 1): 5–13
https://doi.org/10.15302/J-FASE-2019300
21 M, Springmann M, Clark D, Mason-D’Croz K, Wiebe B L, Bodirsky L, Lassaletta Vries W, de S J, Vermeulen M, Herrero K M, Carlson M, Jonell M, Troell F, DeClerck L J, Gordon R, Zurayk P, Scarborough M, Rayner B, Loken J, Fanzo H C J, Godfray D, Tilman J, Rockström W Willett. Options for keeping the food system within environmental limits. Nature , 2018, 562( 7728): 519–525
https://doi.org/10.1038/s41586-018-0594-0 pmid: 30305731
22 R, Wang W M, Shi Y L Li. Phosphorus supply and management in vegetable production systems in China. Frontiers of Agricultural Science and Engineering , 2019, 6( 4): 348–356
https://doi.org/10.15302/J-FASE-2019277
23 B, Gu X, Ju J, Chang Y, Ge P M Vitousek. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America , 2015, 112( 28): 8792–8797
https://doi.org/10.1073/pnas.1510211112 pmid: 26124118
24 U M Sainju. Determination of nitrogen balance in agroecosystems. MethodsX , 2017, 4 : 199–208
https://doi.org/10.1016/j.mex.2017.06.001 pmid: 28725573
25 Y, Yin R, Zhao Y, Yang Q, Meng H, Ying K G, Cassman W, Cong X, Tian K, He Y, Wang Z, Cui X, Chen F Zhang. A steady-state N balance approach for sustainable smallholder farming. Proceedings of the National Academy of Sciences of the United States of America , 2021, 118( 39): e2106576118
https://doi.org/10.1073/pnas.2106576118 pmid: 34556575
26 X, Wang C, Zou X, Gao X, Guan W, Zhang Y, Zhang X, Shi X Chen. Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis. Environmental Pollution , 2018, 239 : 375–383
https://doi.org/10.1016/j.envpol.2018.03.090 pmid: 29674216
27 X, Wang C, Zou X, Gao X, Guan Y, Zhang X, Shi X Chen. Nitrate leaching from open-field and greenhouse vegetable systems in China: a meta-analysis. Environmental Science and Pollution Research International , 2018, 25( 31): 31007–31016
https://doi.org/10.1007/s11356-018-3082-z pmid: 30182316
28 Z, Cui S, Yue G, Wang F, Zhang X Chen. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environmental Science & Technology , 2013, 47( 11): 6015–6022
https://doi.org/10.1021/es4003026 pmid: 23662999
29 J, Gu Y, Wu Z, Tian H Xu. Nitrogen use efficiency, crop water productivity and nitrous oxide emissions from Chinese greenhouse vegetables: a meta-analysis. Science of the Total Environment , 2020, 743 : 140696
https://doi.org/10.1016/j.scitotenv.2020.140696 pmid: 32653715
30 B, Liu X, Wang L, Ma D, Chadwick X Chen. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: a meta-analysis. Environmental Pollution , 2021, 269 : 116143
https://doi.org/10.1016/j.envpol.2020.116143 pmid: 33310496
31 J, Min W Shi. Nitrogen discharge pathways in vegetable production as non-point sources of pollution and measures to control it. Science of the Total Environment , 2018, 613–614: 123–130
32 J, Min H, Zhang W Shi. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production. Agricultural Water Management , 2012, 111 : 53–59
https://doi.org/10.1016/j.agwat.2012.05.003
33 J, Min H J, Sun H J, Kronzucker Y, Wang W M Shi. Comprehensive assessment of the effects of nitrification inhibitor application on reactive nitrogen loss in intensive vegetable production systems. Agriculture, Ecosystems & Environment , 2021, 307 : 107227
https://doi.org/10.1016/j.agee.2020.107227
34 J, Zhou B, Li L, Xia C, Fan Z Xiong. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production. Journal of Cleaner Production , 2019, 225 : 984–994
https://doi.org/10.1016/j.jclepro.2019.03.191
35 J, Zhang P, He W, Ding S, Ullah T, Abbas M, Li C, Ai W Zhou. Identifying the critical nitrogen fertilizer rate for optimum yield and minimum nitrate leaching in a typical field radish cropping system in China. Environmental Pollution , 2021, 268(Part B): 115004
36 Y, Zhao H, Lv W, Qasim L, Wan Y, Wang X, Lian Y, Liu J, Hu Z, Wang G, Li J, Wang S, Lin K Butterbach-Bahl. Drip fertigation with straw incorporation significantly reduces N2O emission and N leaching while maintaining high vegetable yields in solar greenhouse production. Environmental Pollution , 2021, 273 : 116521
https://doi.org/10.1016/j.envpol.2021.116521 pmid: 33508627
37 F, He Q, Chen R, Jiang X, Chen F Zhang. Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill.) with conventional and cite-specific nitrogen management in Northern China. Nutrient Cycling in Agroecosystems , 2007, 77( 1): 1–14
https://doi.org/10.1007/s10705-006-6275-7
38 R B, Thompson N, Tremblay M, Fink M, Gallardo F M Padilla. Tools and strategies for sustainable nitrogen fertilisation of vegetable crops. In: Tei F, Nicola S, Benincasa P, eds. Advances in Research on Fertilization Management of Vegetable Crops. Switzerland: Springer , 2017, 11–63
39 J, Wehrmann H C Scharpf. The Nmin-method-an aid to integrating various objectives of nitrogen-fertilization. Journal of Plant Nutrition and Soil Science , 1986, 149( 4): 428–440
40 H P, Lorenz J, Schlaghecken G, Engel M Bloetz. Systematic nitrogen supply in vegetable crops following to the supplemental Nmin required value-KNS-System . Neustadter Hefte , 1986 ( in German)
41 M, Fink H C Scharpf. N-expert-a decision support system for vegetable fertilization in the field. Acta Horticulturae , 1993, 339 : 67–74
https://doi.org/10.17660/ActaHortic.1993.339.6
42 F R, Magdoff W E, Jokela R H, Fox G F Griffin. A soil test for nitrogen availability in the northeastern United States. Communications in Soil Science and Plant Analysis , 1990, 21( 13–16): 1103–1115
https://doi.org/10.1080/00103629009368293
43 F, He R, Jiang Q, Chen F, Zhang F Su. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environmental Pollution , 2009, 157( 5): 1666–1672
https://doi.org/10.1016/j.envpol.2008.12.017 pmid: 19167792
44 C, Sonneveld den Ende J, van Bes S S de. Estimating the chemical compositions of soil solutions by obtaining saturation extracts or specific 1:2 by volume extracts. Plant and Soil , 1990, 122( 2): 169–175
https://doi.org/10.1007/BF02851971
45 X P, Chen F S Zhang. Establishing a technical index system for soil formula and fertilizer application through the “3414” experiment. China Agricultural Technology Extension , 2006, 22(4): 36−39 ( in Chinese)
46 Z L Zhu. On the methodology of recommendation for the application rate of chemical fertilizer nitrogen to crops. Plant Nutrition and Fertilizer Science , 2006, 12(1): 1−4 ( in Chinese)
47 J, Ziegler K, Strohmeier T Brand. Nitrogen supply of vegetables based on the “KNS system”. Acta Horticulturae , 1996, 428 : 223–234
https://doi.org/10.17660/ActaHortic.1996.428.23
48 C, Feller M Fink. Nmin target values for field vegetables. Acta Horticulturae , 2002, ( 571): 195–201
https://doi.org/10.17660/ActaHortic.2002.571.23
49 T K, Hartz W E, Bendixen L Wierdsma. The value of presidedress soil nitrate testing as a nitrogen management tool in irrigated vegetable production. HortScience , 2000, 35( 4): 651–656
https://doi.org/10.21273/HORTSCI.35.4.651
50 T G, Bottoms R F, Smith M D, Cahn T K Hartz. Nitrogen requirements and N status determination of lettuce. HortScience , 2012, 47( 12): 1768–1774
https://doi.org/10.21273/HORTSCI.47.12.1768
51 R, Guo X, Li P, Christie Q, Chen R, Jiang F Zhang. Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive production systems. Plant and Soil , 2008, 313( 1–2): 55–70
https://doi.org/10.1007/s11104-008-9679-0
52 T, Ren P, Christie J, Wang Q, Chen F Zhang. Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment. Scientia Horticulturae , 2010, 125( 1): 25–33
https://doi.org/10.1016/j.scienta.2010.02.014
53 F M, Padilla M, Farneselli G, Gianquinto F, Tei R B Thompson. Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management. Agricultural Water Management , 2020, 241 : 106356
https://doi.org/10.1016/j.agwat.2020.106356
54 Agriculture and Horticulture Development Board (AHDB). Nutrient Management Guide (RB209) . Available at AHDB website on May 4, 2022
55 C M, Geraldson K B Tyler. Plant analysis as an aid in fertilizing vegetable crops. In: Westerman RL, ed. Soil Testing and Plant Analysis, volume 3, 3rd ed. Madison: Soil Science Society of America , 1990, 549–562
56 J K, Olsen D J Lyons. Petiole sap nitrate is better than total nitrogen in dried leaf for indicating nitrogen status and yield responsiveness of capsicum in subtropical Australia. Australian Journal of Experimental Agriculture , 1994, 34( 6): 835–843
https://doi.org/10.1071/EA9940835
57 G, Gianquinto P, Sambo D Borsato. Determination of SPAD threshold values for the optimisation of nitrogen supply in processing tomato. Acta Horticulturae , 2006, ( 700): 159–166
https://doi.org/10.17660/ActaHortic.2006.700.26
58 J L, Hatfield A A, Gitelson J S, Schepers C L Walthall. Application of spectral remote sensing for agronomic decisions. Agronomy Journal , 2008, 100( S3): S117–S131
https://doi.org/10.2134/agronj2006.0370c
59 W, Feng X, Yao Y, Zhu Y C, Tian W X Cao. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy , 2008, 28( 3): 394–404
https://doi.org/10.1016/j.eja.2007.11.005
60 T K, Hartz T G Bottoms. Nitrogen requirements of drip-irrigated processing tomatoes. HortScience , 2009, 44( 7): 1988–1993
https://doi.org/10.21273/HORTSCI.44.7.1988
61 M, Farneselli F, Tei E Simonne. Reliability of petiole sap test for N nutritional status assessing in processing tomato. Journal of Plant Nutrition , 2014, 37( 2): 270–278
https://doi.org/10.1080/01904167.2013.859696
62 S E, Parks D E, Irving P J Milham. A critical evaluation of on-farm rapid tests for measuring nitrate in leafy vegetables. Scientia Horticulturae , 2012, 134 : 1–6
https://doi.org/10.1016/j.scienta.2011.10.015
63 Y T, Zhang H Y, Wang Q L, Lei J Z, Zhang L M, Zhai T Z, Ren H B Liu. Recommended methods for optimal nitrogen application rate. Scientia Agricultura Sinica , 2018, 51(15): 2937−2947 ( in Chinese)
64 H, Zhao X, Li Y Jiang. Response of nitrogen losses to excessive nitrogen fertilizer application in intensive greenhouse vegetable production. Sustainability , 2019, 11( 6): 1513
https://doi.org/10.3390/su11061513
65 M, Quemada M, Baranski Lange M N J, Nobel-de A, Vallejo J M Cooper. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agriculture, Ecosystems & Environment , 2013, 174 : 1–10
https://doi.org/10.1016/j.agee.2013.04.018
66 J L, Li J W, Zhang L Y, Wang S A, Jin Q Chen. Effects of integrated root zone management on greenhouse tomato growth and nitrogen utilization. China Vegetables , 2011, (22/24): 31−37 ( in Chinese)
67 M, Zhao C, Jiang X, Li X, He Q Hao. Variations in nitrous oxide emissions as manipulated by plastic film mulching and fertilization over three successive years in a hot pepper-radish rotated vegetable production system. Agriculture, Ecosystems & Environment , 2020, 304 : 107127
https://doi.org/10.1016/j.agee.2020.107127
68 B, Zhang Q, Li J, Cao C, Zhang Z, Song F, Zhang X Chen. Reducing nitrogen leaching in a subtropical vegetable system. Agriculture, Ecosystems & Environment , 2017, 241 : 133–141
https://doi.org/10.1016/j.agee.2017.03.006
69 R, Huang J, Liu X, He D, Xie J, Ni C, Xu Y, Zhang E, Ci Z, Wang M Gao. Reduced mineral fertilization coupled with straw return in field mesocosm vegetable cultivation helps to coordinate greenhouse gas emissions and vegetable production. Journal of Soils and Sediments , 2020, 20( 4): 1834–1845
https://doi.org/10.1007/s11368-019-02477-2
70 T, Li W, Zhang J, Yin D, Chadwick D, Norse Y, Lu X, Liu X, Chen F, Zhang D, Powlson Z Dou. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Global Change Biology , 2018, 24( 2): e511–e521
https://doi.org/10.1111/gcb.13918 pmid: 28973790
71 L, Xia S K, Lam D, Chen J, Wang Q, Tang X Yan. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis.. Global Change Biology , 2017, 23( 5): 1917–1925
https://doi.org/10.1111/gcb.13455 pmid: 27506858
72 D R, Kanter T D Searchinger. A technology-forcing approach to reduce nitrogen pollution. nature sustainability , 2018, 1 : 544–552
73 C, Qiao L, Liu S, Hu J E, Compton T L, Greaver Q Li. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biology , 2015, 21( 3): 1249–1257
https://doi.org/10.1111/gcb.12802 pmid: 25380547
74 C, Ti L, Xia S X, Chang X Yan. Potential for mitigating global agricultural ammonia emission: a meta-analysis. Environmental Pollution , 2019, 245 : 141–148
https://doi.org/10.1016/j.envpol.2018.10.124 pmid: 30415033
75 J, Yang S, Liao Y, Li B, Cao Y, Sun G, Zou B Liu. Reducing nitrogen pollution while improving tomato production by controlled-release urea application. Soil Science and Plant Nutrition , 2018, 64( 5): 632–641
https://doi.org/10.1080/00380768.2018.1490630
76 B K, Saha M T, Rose V N L, Wong T R, Cavagnaro A F Patti. A slow release brown coal-urea fertiliser reduced gaseous N loss from soil and increased silver beet yield and N uptake. Science of the Total Environment , 2019, 649 : 793–800
https://doi.org/10.1016/j.scitotenv.2018.08.145 pmid: 30176489
77 L, Shan Y, He J, Chen Q, Huang X, Lian H, Wang Y Liu. Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Agricultural Water Management , 2015, 159 : 255–263
https://doi.org/10.1016/j.agwat.2015.06.008
78 M, Zhou S, Ying J, Chen P, Jiang Y Teng. Effects of biochar-based fertilizer on nitrogen use efficiency and nitrogen losses via leaching and ammonia volatilization from an open vegetable field. Environmental Science and Pollution Research International , 2021, 28( 46): 65188–65199
https://doi.org/10.1007/s11356-021-15210-9 pmid: 34227011
79 W, Zhou T F, Lyu Z P, Yang H, Sun L J, Yang Y, Chen W J Ren. Research advances on regulating soil nitrogen loss by the type of nitrogen fertilizer and its application strategy. Chinese Journal of Applied Ecology , 2016, 27(9): 3051–3058 ( in Chinese)
80 Y, He X R, Wang X P Chen. Review of slow/controlled release fertilizer and its prevention and control effects of farmland nitrogen loss. Journal of Anhui Agricultural Sciences , 2021, 49(21): 7–10, 14 ( in Chinese)
81 D R, Chadwick J R, Williams Y, Lu L, Ma Z, Bai Y, Hou X, Chen T H Misselbrook. Strategies to reduce nutrient pollution from manure management in China. Frontiers of Agricultural Science and Engineering , 2020, 7( 1): 45–55
https://doi.org/10.15302/J-FASE-2019293
82 T, Zhang Y, Hou T, Meng Y, Ma M, Tan F, Zhang O Oenema. Replacing synthetic fertilizer by manure requires adjusted technology and incentives: a farm survey across China. Resources, Conservation and Recycling , 2021, 168 : 105301
https://doi.org/10.1016/j.resconrec.2020.105301
83 Y J, Geng J Y, Wang Z R, Sun C, Ji M Y, Huang Y H, Zhang P S, Xu S Q, Li M, Pawlett J W Zou. Soil N-oxide emissions decrease from intensive greenhouse vegetable fields by substituting synthetic N fertilizer with organic and bio-organic fertilizers. Geoderma , 2021, 383 : 114730
https://doi.org/10.1016/j.geoderma.2020.114730
84 M, Zhang B, Li Z Q Xiong. Effects of organic fertilizer on net global warming potential under an intensively managed vegetable field in southeastern China: a three-year field study. Atmospheric Environment , 2016, 145 : 92–103
https://doi.org/10.1016/j.atmosenv.2016.09.024
85 T, Diao L, Xie L, Guo H, Yan M, Lin H, Zhang J, Lin E Lin. Measurements of N2O emissions from different vegetable fields on the North China Plain. Atmospheric Environment , 2013, 72 : 70–76
https://doi.org/10.1016/j.atmosenv.2013.02.040
86 W, Wei Y, Yan J, Cao P, Christie F, Zhang M Fan. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: an integrated analysis of long-term experiments. Agriculture, Ecosystems & Environment , 2016, 225 : 86–92
https://doi.org/10.1016/j.agee.2016.04.004
87 D B, Watts H A, Torbert Y, Feng S A Prior. Soil microbial community dynamics as influenced by composted dairy manure, soil properties, and landscape position. Soil Science , 2010, 175( 10): 474–486
https://doi.org/10.1097/SS.0b013e3181f7964f
88 D, Pan G, Zhou N, Zhang L Zhang. Farmers’ preferences for livestock pollution control policy in China: a choice experiment method. Journal of Cleaner Production , 2016, 131 : 572–582
https://doi.org/10.1016/j.jclepro.2016.04.133
89 Q, Chen Q, Zhang R X, Chang H K, Chen L, Chen B, Liang J L Li. Developing trends and challenges of water-soluble fertilizer industry in China. Journal of Plant Nutrition and Fertilizer , 2017, 23(06): 9 ( in Chinese)
90 Z, Fan S, Lin X, Zhang Z, Jiang K, Yang D, Jian Y, Chen J, Li Q, Chen J Wang. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agricultural Water Management , 2014, 144 : 11–19
https://doi.org/10.1016/j.agwat.2014.05.010
91 H R, Li X R, Mei J D, Wang F, Huang W P, Hao B G Li. Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agricultural Water Management , 2021, 244 : 106534
https://doi.org/10.1016/j.agwat.2020.106534
92 H F, Lv W W, Zhou J, Dong S P, He F, Chen M H, Bi Q Y, Wang J L, Li B Liang. Irrigation amount dominates soil mineral nitrogen leaching in plastic shed vegetable production systems. Agriculture, Ecosystems & Environment , 2021, 317 : 107474
https://doi.org/10.1016/j.agee.2021.107474
93 of Agriculture and Rural Affairs of the People’s Republic of China (MARA) Ministry. Circular of the Ministry of Agriculture and Rural Affairs on printing and distributing the Action Plan for Zero Growth in the Application of Fertilizer by 2020. Beijing: MARA , 2015. Available at MARA website on May 6, 2022
94 X P, Chen Z L, Cui P M, Vitousek K G, Cassman P A, Matson J S, Bai Q F, Meng P, Hou S C, Yue V, Römheld F S Zhang. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America , 2011, 108( 16): 6399–6404
https://doi.org/10.1073/pnas.1101419108 pmid: 21444818
95 W, Zhang G, Cao X, Li H, Zhang C, Wang Q, Liu X, Chen Z, Cui J, Shen R, Jiang G, Mi Y, Miao F, Zhang Z Dou. Closing yield gaps in China by empowering smallholder farmers. Nature , 2016, 537( 7622): 671–674
https://doi.org/10.1038/nature19368 pmid: 27602513
[1] Peter M. VITOUSEK, Xinping CHEN, Zhenling CUI, Xuejun LIU, Pamela A. MATSON, Ivan ORTIZ-MONASTERIO, G. Philip ROBERTSON, Fusuo ZHANG. CLIMATE-CHANGE-INDUCED TEMPORAL VARIATION IN PRECIPITATION INCREASES NITROGEN LOSSES FROM INTENSIVE CROPPING SYSTEMS: ANALYSIS WITH A TOY MODEL[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 457-464.
[2] Xueqiang ZHU, Peng ZHOU, Peng MIAO, Haoying WANG, Xinlu BAI, Zhujun CHEN, Jianbin ZHOU. NITROGEN USE AND MANAGEMENT IN ORCHARDS AND VEGETABLE FIELDS IN CHINA: CHALLENGES AND SOLUTIONS[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 386-395.
[3] Rachid RAZOUK, Abdellah KAJJI, Anas HAMDANI, Jamal CHARAFI, Lahcen HSSAINI, Said BOUDA. YIELD AND FRUIT QUALITY OF ALMOND, PEACH AND PLUM UNDER REGULATED DEFICIT IRRIGATION[J]. Front. Agr. Sci. Eng. , 2021, 8(4): 583-593.
[4] Di WU, Allan A. ANDALES, Hui YANG, Qing SUN, Shichao CHEN, Xiuwei GUO, Donghao LI, Taisheng DU. LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES[J]. Front. Agr. Sci. Eng. , 2021, 8(4): 545-558.
[5] Xiuwei GUO, Manoj Kumar SHUKLA, Di WU, Shichao CHEN, Donghao LI, Taisheng DU. PLANT DENSITY, IRRIGATION AND NITROGEN MANAGEMENT: THREE MAJOR PRACTICES IN CLOSING YIELD GAPS FOR AGRICULTURAL SUSTAINABILITY IN NORTH-WEST CHINA[J]. Front. Agr. Sci. Eng. , 2021, 8(4): 525-544.
[6] Tammo S. STEENHUIS, Xiaolin YANG. GROUNDWATER DEPLETION IN THE NORTH CHINA PLAIN: THE AGROHYDROLOGICAL PERSPECTIVE[J]. Front. Agr. Sci. Eng. , 2021, 8(4): 594-598.
[7] Luis GARCIA-BARRIOS, Yanus A. DECHNIK-VAZQUEZ. HOW MULTISPECIES INTERCROP ADVANTAGE RESPONDS TO WATER STRESS: A YIELD-COMPONENT ECOLOGICAL FRAMEWORK AND ITS EXPERIMENTAL APPLICATION[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 416-431.
[8] Jouke OENEMA, Oene OENEMA. INTENSIFICATION OF GRASSLAND-BASED DAIRY PRODUCTION AND ITS IMPACTS ON LAND, NITROGEN AND PHOSPHORUS USE EFFICIENCIES[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 130-147.
[9] Sofiya K. MUHABA, Felix D. DAKORA. Symbiotic performance, shoot biomass and water-use efficiency of three groundnut (Arachis hypogaea L.) genotypes in response to phosphorus supply under field conditions in Ethiopia[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 455-466.
[10] Bidjokazo FOFANA, Leonides HALOS-KIM, Mercy AKEREDOLU, Ande OKIROR, Kebba SIMA, Deola NAIBAKELAO, Mel OLUOCH, Fumiko ISEKI. Innovative agricultural extension value chain-based models for smallholder African farmers[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 418-426.
[11] Zhenling CUI, Zhengxia DOU, Hao YING, Fusuo ZHANG. Producing more with less: reducing environmental impacts through an integrated soil-crop system management approach[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 14-20.
[12] Rui WANG, Weiming SHI, Yilin LI. Phosphorus supply and management in vegetable production systems in China[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 348-356.
[13] Maria CARIA, Giuseppe TODDE, Antonio PAZZONA. Evaluation of automated in-line precision dairy farming technology implementation in three dairy farms in Italy[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 181-187.
[14] Yuxin MIAO, David J. MULLA, Pierre C. ROBERT. An integrated approach to site-specific management zone delineation[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 432-441.
[15] Alexey FILIPPOV, Maria KUZNETSOVA, Alexander ROGOZHIN, Olga IAKUSHEVA, Valentina DEMIDOVA, Natalia STATSYUK. Development and testing of a weather-based model to determine potential yield losses caused by potato late blight and optimize fungicide application[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 462-468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed