Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2009, Vol. 4 Issue (2) : 136-141    https://doi.org/10.1007/s11458-009-0023-x
RESEARCH ARTICLE
Study on thermal decomposition kinetics of N,N’-bis(5,5-dimethyl-2-phospha-2-thio-1,3-dioxan-2-yl)ethylenediamine in air
Yuanlin REN(), Bowen CHENG, Jinshu ZHANG, Weimin KANG, Zhenhuan LI, Xupin ZHUANG
School of Textile of Tianjin Polytechnic University; Tianjin Municipal Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin 300160, China
 Download: PDF(155 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The thermal decomposition kinetics of the N,N¢-bis(5,5-dimethyl-2-phospha-2-thio-1,3-dioxan-2-yl)ethylenediamine (DPTDEDA) in air were studied by TG-DTG techniques. The kinetic parameters of the decomposition process for the title compound in the two main thermal decomposition steps were calculated through the Friedman and Flynn-Wall-Ozawsa (FWO) methods and the thermal decomposition mechanism of DPTDEDA was also studied with the Coats-Redfern and Achar methods. The results show that the activation energies for the two main thermal decomposition steps are 128.03 and 92.59 kJ?mol-1 with the Friedman method, and 138.75 and 106.78 kJ?mol-1 with the FWO method, respectively. Although there are two main thermal decomposition steps for DPTDEDA in air, the thermal decomposition mechanism of DPTDEDA in the two steps are the same, i.e. f(α) =3/2(1-α)4/3[(1-α)-1/3-1]-1.

Keywords N      N′-bis(5      5-dimethyl-2-phospha-2-thio-1      3-dioxam-2-yl)ethylenediamine      thermal decomposition kinetics      activation energy      mechanism     
Corresponding Author(s): REN Yuanlin,Email:yuanlinr@163.com   
Issue Date: 05 June 2009
 Cite this article:   
Yuanlin REN,Bowen CHENG,Jinshu ZHANG, et al. Study on thermal decomposition kinetics of N,N’-bis(5,5-dimethyl-2-phospha-2-thio-1,3-dioxan-2-yl)ethylenediamine in air[J]. Front Chem Chin, 2009, 4(2): 136-141.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-009-0023-x
https://academic.hep.com.cn/fcc/EN/Y2009/V4/I2/136
Fig.1  Scheme 1
Fig.2  TG-DTG curves of DPTDEDA at heating rates of 5,10,15,20 K/min in air
Fig.3  TG-DTG curves of DPTDEDA at heating rate of 10 K/min in air
Fig.4  SEM pictures of the char residue of fire retarded viscose
(a) SEM of the surface view of the char residue of fire retarded viscose; (b) SEM of the cross-section view of the char residue of fire retarded viscose
β
α5101520
T/Kdα/dtT/Kdα/dtT/Kdα/dtT/Kdα/dt
0.10543.604.36562.2812.1563.5813.81573.0022.15
0.15548.186.69565.5814.90567.9116.67576.3124.83
0.20550.977.94568.3816.48571.2118.17579.1126.22
0.25553.778.61571.1817.06574.8618.73581.3926.63
0.30558.178.34573.9716.54578.2518.26583.5126.40
0.35541.707.35576.7714.94581.9717.04585.8025.76
0.40564.114.78580.3312.04586.3814.24588.6023.92
0.45571.743.68585.167.60592.149.52592.9220.10
0.60779.791.02797.802.34807.634.67860.604.77
0.65797.581.83849.823.58851.555.08868.855.71
0.70809.452.27861.944.70863.756.72883.268.40
0.75821.312.25871.265.15873.677.54894259.71
0.80831.991.84881.524.77883.597.27902.759.56
0.85849.791.03893.642.94893.506.10912.928.14
Tab.1  Data of thermal decomposition of DPTDEDA from TG-DTG curves at different heating rates
The first thermogravimetric stepThe second thermogravimetric step
α/%Friedman /(kJ·mol-1)FWO /(kJ·mol-1)α/%Friedman /(kJ·mol-1)FWO /(kJ·mol-1)
0.15120.35122.400.6090.1196.68
0.20105.36118.370.65102.6090.79
0.25102.79122.450.7084.9384.72
0.30116.37138.640.7588.0498.68
0.35126.16138.640.8094.04117.77
0.40161.00138.770.8595.22154.29
0.45240.29133.390.9093.15104.5
Mean128.03138.75Mean92.59106.78
Tab.2  The apparent activation energy values of DPTDEDA in the two thermogravimetric steps at the different conversions calculated by Friedman and Flynn-Wall-Ozawa methods respectively
Coats-Redfern method Achar method
βElg ASRSDβElg ASRSD
5126.1411.37-0.99860.03555125.3311.24-0.98870.0545
10129.2411.43-0.99840.035510130.1411.48-0.99840.0360
15130.1611.51-0.99280.074715130.0911.46-0.99290.0738
20124.7611.12-0.99940.022320127.5911.29-0.99940.0210
Mean127.5811.36-0.99730.0420Mean128.2911.37-0.99490.0463
Tab.3  The calculated values of kinetic parameters of the DPTDEDA in the first thermogravimetric step by Coats-Redfern method and Achar method respectively
Coats-Redfern method Achar method
Βlg ASERSDβElg ASRSD
585.513.71-0.99850.0141590.133.62-0.99390.0050
1095.964.06-0.99850.014710100.234.29-0.99850.0147
15103.574.27-0.99820.01311597.253.96-0.99320.0427
2091.744.35-0.98690.04252089.774.39-0.98690.0425
Mean94.204.10-0.99550.0211Mean94.354.06-0.99310.0263
Tab.4  The calculated values of kinetic parameters of the DPTDEDA in the second thermogravimetric step by Coats-Redfern method and Achar method respectively
1 Tange L, Drohmann D. Environmental issues related to end-of-life options of plastics containing brominated flame retardants. Fire and Materials , 2004, 28(5): 403–410
doi: 10.1002/fam.841
2 Lu S Y, Hamerton I. Recent developments in the chemistry of halogen[hyphen]free flame retardant polymers. Prog Polym Sci , 2002, 27(8): 1661–1712
doi: 10.1016/S0079-6700(02)00018-7
3 Wu Y L, Wang C A, Xu K, Chen M C. Some aspect of preparation and application of halogen-free flame retardant polymers containing phosphorus. Polymer Bulletin , 2005, 6: 37–42, 83 (in Chinese)
4 Catala J M, Brossas J. Synthesis of fire-retardant polymers without halogens. Prog Org Coat , 1993, 22(1–4): 69–82
doi: 10.1016/0033-0655(93)80016-4
5 Davis J. The technology of halogen-free flame retardant additives for polymeric systems. Engineering Plastic , 1996, 9(5): 403–419
6 Grande J A. Halogen-free, flame-retardant TPU targets wire and cable, mass transit. Modern Plastics , 1998, 75(2): 95
7 Ng W. Flame-retardant suppliers shift to halogen-free grades. Modern Plastics , 1999, 76(10): 84
8 Morgan A B, Tour J M. Synthesis and Testing of Nonhalogenated Alkyne-Containing. Flame-Retarding Polymer Additives. Macromolecules , 1998, 31(9): 2857–2865
doi: 10.1021/ma9715482
9 Weil E D, Levchik S V, Ravey M, Zhu W M. A survey of recent progress in phosphorus-based flame retardants and some mode of action studies. Phosphorus Sulfur Silicon Relat Elem , 1999, 146: 17–20
10 Woodward G, Harris C, Manku J. Design of new organophosphorus flame retardants. Phosphorus Sulfur Silicon Relat Elem , 1999, 146: 25–28
11 Aaronson A M, Bright D A. Oligomeric phosphate esters as flame retardants. Phosphorus Sulfur Silicon Relat Elem , 1996, 110(1–4): 83–86
12 Horacek H, Grabner W. Nitrogen based flame retardants for nitrogen containing polymers. Makromol Chem Macromol Symp , 1993, 74: 271–276
13 Weil E, Mcswigan B. Melamine phosphates and pyrophosphates in flame-retardant products with new potential. J Coat Technol , 1994, 66(839): 75–82
14 Li Q, Jiang P K, Wei P. Synthesis, characteristic, and application of new flame retardant containing phosphorus, nitrogen, and silicon. Polym Eng Sci , 2006, 46(3): 344–350
doi: 10.1002/pen.20472
15 Yang C Q, Wu W D, Xu Y. The combination of a hydroxy-functional ??organophosphorus ??oligomer?? and ???melamine-formaldehyde as a flame retarding finishing system for cotton. Fire and Materials , 2005, 29(2): 109–120
doi: 10.1002/fam.877
16 Abdel-Mohdy F A. Graft copolymerization of nitrogen- and phosphorus-containing monomers onto cellulosics for flame-retardant finishing of cotton textiles. J Appl Polym Sci , 2003, 89(9): 2573–2579
doi: 10.1002/app.12247
17 Liu Y, Wang Q. Preparation of microencapsulated red phosphorus through melamine cyanurate self-assembly and its performance in flame retardant polyamide 6. Polym Eng Sci , 2006, 46(11):1548–1553
doi: 10.1002/pen.20627
18 Karaivanova M, MihailovaN, GjurovaK. The effect of sulfur- and nitrogen-containing fire retardants on reducing the flammability of a polychloroprene composition used for cables. J Appl Polym Sci , 1990, 40(11–12): 1939–1949
doi: 10.1002/app.1990.070401111
19 Karaivanona M S, Gjurova K M. Non-halogen-containing flame-retardant ethylene-propylene copolymer compositions for cable insulation with nitrogen- and sulfur-containing fire retardants. J Appl Polym Sci , 1997, 63(5): 581–588
doi: 10.1002/(SICI)1097-4628(19970131)63:5<581::AID-APP5>3.0.CO;2-Q
20 Koutu B B, Sharma R K. Synthesis of a flame-retardant dope additive dithiopyrophosphate and its effect on viscose rayon fibres. Indian J Fibre Text Res , 1996, 21: 140–142
21 Lewin M, Brozek J, Martens M M. POLYMERS FOR ADVANCED TECHNOLOGIES. Polym Adv Tech , 2002, 13(10–12): 1091–1102
22 Cheng B W, Ren Y L. Synthesis of a kind of cellulose fire retardant. CN 1563160, 2004 (in Chinese)
23 Tao Y T, Zhan D, Zhang KL. Acta Chim Sinica, 2006, 64(5): 435–438 (in Chinese)
24 Friedman H L. Kinetics of thermal degradation of charforming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci, Part C , 1964, 6(1):183–195
25 Chen P, Zhao F Q, Luo Y, Hu R Z, Zheng Y M, Deng M Z, Gao Y. Acta Chim Sinica , 2004, 62(13): 1197–1204 (in Chinese)
26 Ozawa T. A new method of analyzing thermogravimetric data. Bul1 Chem Soc Jpn , 1965, 38: 1881–1886
27 Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data. Nature , 1964, 201(1): 68–69
doi: 10.1038/201068a0
28 Xing Y H, Yuan H Q, Zhang Y H, Zhang B L, Xu F, Sun L X, Niu S Y, Bai F Y. Chem J Chinese Universities , 2006, 27(7): 1205–1210 (in Chinese)
29 Hu R Z, Shi Q Z. Thermal Analysis Kinetics. Beijing: Science Press. 2001, 65 (in Chinese)
30 Li S H, Bai J R, Sun B Z, Hu A J, Wang Q. Effect of heating rate on the pyrolysis characteristics of oil shales. Chemical Engineering , 2007, 35(1): 64–67 (in Chinese)
31 Luo Y R. Handbook of Chemical Bond Dissociation Energies Data. Beijing: Science Press. 2005, 295
32 Dean J A. Lange’s Handbook of Chemistry. 15 edn. New York: McGraw-Hill, Inc. 1999, 587–594
[1] Yuxiang BU, . Peptides-assisted charge transfers in proteins: relay mechanism and its controllability[J]. Front. Chem. China, 2010, 5(3): 309-324.
[2] Fan YANG, Xinning WANG, Yaping ZHANG, Xiaofei WANG, Hong CHEN, Xin YANG, Jianmin CHEN, . Real-time, single-particle measurements of ambient aerosols in Shanghai[J]. Front. Chem. China, 2010, 5(3): 331-341.
[3] Jianming CHEN, Qikai LI, Lingyi MENG, Zhigang SHUAI, . Theoretical study on self-assembly in organic materials[J]. Front. Chem. China, 2010, 5(1): 2-10.
[4] Bozhou WANG, Weipeng LAI, Qian LIU, Peng LIAN, Yongqiang XUE. Synthesis, characterization and quantum chemistry study of 3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine[J]. Front Chem Chin, 2009, 4(1): 69-74.
[5] SONG Xiaolan, HE Xi, YANG Haiping, XU Dayu, JIANG Nan, QIU Guanzhou. Kinetics of thermal decomposition of CeO nanocrystalline precursor prepared by precipitation method[J]. Front. Chem. China, 2008, 3(2): 182-185.
[6] QIAN Jianhua, LIU Lin, WANG Daolin, XING Jinjuan. Synthesis of 3,6-bisubstituted phenyl-bi-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives[J]. Front. Chem. China, 2007, 2(4): 428-430.
[7] WU Hui, GUO Huiling, LEI Jiaheng, ZHANG Rongguo, LIU Yong. Research on synthesis and action mechanism of polycarboxylate superplasticizer[J]. Front. Chem. China, 2007, 2(3): 322-325.
[8] Li Laisheng, Liu Xu, Huang Zhibing, Ge Xiaohui, Li Yanping. Preparation and Evaluation of 3,5-Dinitrobenzoyl-Bonded Silica Gel Stationary Phase for HPLC[J]. Front. Chem. China, 2006, 1(1): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed