Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2009, Vol. 4 Issue (2) : 191-195    https://doi.org/10.1007/s11458-009-0036-5
RESEARCH ARTICLE
Fluorescence cross-correlation spectroscopy using single wavelength laser
Chao XIE, Chaoqing DONG, Jicun REN()
College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, china
 Download: PDF(163 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we first introduced the basic principle of fluorescence cross-correlation spectroscopy (FCCS) and then established an FCCS setup using a single wavelength laser. We systematically optimized the setup, and the detection volume reached about 0.7 fL. The home-built setup was successfully applied for the study of the binding reaction of human immunoglobulin G with goat antihuman immunoglobulin G. Using quantum dots (745 nm emission wavelength) and Rhodamine B (580 nm emission wavelength) as labeling probes and 532 nm laser beam as an excitation source, the cross-talk effect was almost completely suppressed. The molecule numbers in a highly focused volume, the concentration, and the diffusion time and hydrodynamic radii of the reaction products can be determined by FCCS system.

Keywords fluorescence cross-correlation spectroscopy      single-molecule detection      single laser excitation      quantum dot     
Corresponding Author(s): REN Jicun,Email:jicunren@sjtu.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Jicun REN,Chao XIE,Chaoqing DONG. Fluorescence cross-correlation spectroscopy using single wavelength laser[J]. Front Chem Chin, 2009, 4(2): 191-195.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-009-0036-5
https://academic.hep.com.cn/fcc/EN/Y2009/V4/I2/191
Fig.1  FCCS setup with single wavelength laser
Fig.2  Emission spectra of Rhodamine B and QD745
(1) Emission spectra of Rhodamine B, (2) Emission spectra of QD745, (3) Emission filter for channel 1,(4) Dichroic mirror, (5) Emission filter for channel 2
Fig.3  FCS curves in channel 1, 2 and FCCS curve
Fig.4  FCCS curves of reaction products (A) and relation ship between molecular number and diluting times of the solution after the binding reaction (B).
Concentration of reaction product/ (mol·L ) : (a) 1.14×10 ; (b) 2.07×10 ; (c) 4.27×10 ; (d) 1.02×10 ; e) 2.21×10
Fig.5  Normalized FCCS curves of the immune complex
1 Shao C, Hu D H, Sun H Z, Yan L K, Su Z M, Wang R S, Zhu W S, Guo J H, Sun N Z, Sun H, Li Z S, Sun C C. Structure exploration and function prediction of SARS coronavirus E protein. Chem Res Chinese U , 2005, 26(8): 1512-1516 (in Chinese)
2 Zhao J W, Wang N. Electricity characterization of metalloprotein at molecular level by conducting atomic force microscopy. Chem Res Chinese U , 2005, 26(4): 745-753 (in Chinese)
3 Nie S, Chen P, Liang S P. Identification of interacting molecules by biomolecular interaction analysis combined with surface plasmon resonance-mass spectrometry at 10-15 mol Level. Chem Res Chinese U , 2005, 26(1): 68-72 (in Chinese)
4 Heikai A A, Heikal S T, Baird G S, Tsien R Y, Webb W W. Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: Coral Red (dsRed) and Yellow (Citrine). Proc Natl Acad Sci , 2000, 97(22): 11996-12001
doi: 10.1073/pnas.97.22.11996
5 Torres T, Levitus M. Measuring conformational dynamics: A new FCS-FRET approach. J Phys Chem B , 2007, 111(25): 7392-7400
doi: 10.1021/jp070659s
6 Wennmalm S, Edman L, Rigler R. Conformational fluctuations in single DNA molecules. Proc Natl Acad Sci , 1997, 94(20): 10641-10646
doi: 10.1073/pnas.94.20.10641
7 Schwille P, Meyer-Almes F J, Rigler R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. J Biophys , 1997, 72(4): 1878-1886
doi: 10.1016/S0006-3495(97)78833-7
8 Larson D R, Gosse J A, Holowka D A, Baird B A, Webb W W. Temporally resolved interactions between antigen-stimulated IgE receptors and lyn kinase on living cells. J Cell Biol , 2005, 171(3): 527-536
doi: 10.1083/jcb.200503110
9 Oyama R,Takashima H, Yonezawa M, Doi N, Miyamoto-Sato E, Kinjo M, Yanagawa H. Protein-protein interaction analysis by c-terminally specific fluorescence labeling and fluorescence cross-correlation spectroscopy. Nucleic Acids Res , 2006, 34(14): e102
doi: 10.1093/nar/gkl477
10 Kettling U, Koltermann A, SchwilleP, Eigen M. Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci , 1998, 95(4): 1416-1420
doi: 10.1073/pnas.95.4.1416
11 Rarbach M, Kettling U, Koltermann A, Eigen M. Dual-color fluorescence cross-correlation spectroscopy for monitoring the kinetics of enzyme-catalyzed reactions. Methods , 2001, 24(2): 104-116
doi: 10.1006/meth.2001.1172
12 Bacia K, Schwille P. Dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods , 2003, 29 (1): 74-85
doi: 10.1016/S1046-2023(02)00291-8
13 Bacia K, Kim S A, Schwille P. Fluorescence cross-correlation spectroscopy in living cells. Nat Methods , 2006, 3(2): 83-89
doi: 10.1038/nmeth822
14 Kim S A, Heinze K G, Waxham M N, Schwille P. Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc Natl Acad Sci , 2004, 101(1): 105-110
doi: 10.1073/pnas.2436461100
15 Wohland T, Hwang L C. Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys , 2007, 49(1): 1-13
doi: 10.1007/s12013-007-0042-5
16 Magde D, Elson E L, Webb W W. Thermodynamic fluctuations in a reacting system: measurements by fluorescence correlation spectroscopy. Phys Rev Lett , 1972, 29(11): 705-708
doi: 10.1103/PhysRevLett.29.705
17 Rigler R, U Mets. Diffusion of single molecules through a gaussian laser beam. Soc Photo-Opt Instrum Eng , 1992, 1921 (1): 239-248
18 Rigler R, Mets U, Widengren J, Kask P. Fluorescence correlation spectroscopy with high count rates and low background: analysis of translational diffusion. Eur Biophys J , 1993, 22(3): 169-175
doi: 10.1007/BF00185777
19 Eigen M, Rigler R. Sorting Single Molecules: Application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci , 1994, 91(13): 5740-5747
doi: 10.1073/pnas.91.13.5740
20 Zhang P D, Ren J C. Advances in fluorescence correlation spectroscopy and its applications in single molecule detection. Chinese J Anal Chem , 2005, 33(6): 875-880 (in Chinese)
21 Dong C Q, Bi R, Qian H F, Li L, RenJ C. Coupling fluorescence correlation spectroscopy with microchip electrophoresis to determine the effective surface charge of water-soluble quantum dots. Small , 2006, 2(4): 534-538
doi: 10.1002/smll.200500456
22 Dong C Q, Qian H F, Fang N F, Ren J C. Study of fluorescence quenching and dialysis process of cdte quantum dots, using ensemble techniques and fluorescence correlation spectroscopy. J Phys Chem B , 2006, 110(23): 11069-11075
doi: 10.1021/jp060279r
23 Dong C Q, Zhang P D, Bi R, Ren J C. Characterization of solution-phase DNA hybridization by fluorescence autocorrelation spectroscopy: genotyping of C677T from methylene tetrahydrofolate reductase gene. Talanta , 2007, 70(71): 1192-1197
doi: 10.1016/j.talanta.2006.06.019
24 Dong C Q, Ren J C. On-line investigation of laser-induced aggregation and photo-activation of cdte quantum dots by fluorescence correlation spectroscopy. J Phys Chem C , 2007, 111(22): 7918-7923
doi: 10.1021/jp071082h
25 Qian H F, Dong C Q, Peng J L, Qiu X, Xu Y H, Ren J C. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition. J Phys Chem C , 2007, 111 (45): 16852-16857
doi: 10.1021/jp074961c
[1] Guanjiao CHEN, Wenjin ZHANG, Xinhua ZHONG, . Single-source precursor route for overcoating CdS and ZnS shells around CdSe core nanocrystals[J]. Front. Chem. China, 2010, 5(2): 214-220.
[2] He Rong, You Xiaogang, Tian Hongye, Gao Feng, Cui Daxiang, Gu Hongchen. Synthesis and characterization of monodisperse CdSe quantum dots different organic solvents[J]. Front. Chem. China, 2006, 1(4): 378-383.
[3] Tian Hongye, Shao Jun, He Rong, Gao Feng, Cui Daxiang, Gu Hongchen. Preparation and properties of polymer and quantum dot composites[J]. Front. Chem. China, 2006, 1(4): 474-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed