Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front. Chem. China    2010, Vol. 5 Issue (2) : 178-183    https://doi.org/10.1007/s11458-010-0114-8
Research articles
A novel intramolecular charge transfer fluorescent chemosensor highly selective for Cu 2+ in neutral aqueous solutions
Qingxian LIAO1,Aifang LI2,Zhao LI2,Yibin RUAN2,Yunbao JIANG2,
1.Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory of Analytical Sciences, Xiamen University, Xiamen 361005, China;Xiamen Water Group Co. Ltd., Xiamen 361008, China; 2.Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory of Analytical Sciences, Xiamen University, Xiamen 361005, China;
 Download: PDF(327 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A selective and sensitive intramolecular charge transfer (ICT) fluorescent chemosensor was designed for Cu2+ in neutral aqueous solutions of pH 7.0. The design of this totally water-soluble fluorescent chemosensor was based on the binding motif of Cu2+ to aminoacid, which is coupled to an ICT fluorophore bearing a 1,3,4-thiodiazole moiety in the electron acceptor. The formation of a 1:1 complex of Cu2+ to 2 was suggested to lead to fluorescence quenching. The quenching obeyed Stern-Volmer theory in neutral aqueous solution of pH 7.0 for Cu2+ over 5.0 × 10−7 to 3.0 × 10−5 mol·L−1, with a quenching constant of 1.8 × 105 L·mol−1 and a detection limit of 2.0 × 10−7 mol·L−1. The binding of Cu2+ to 2 can be fully reversed by addition of chelator EDTA, affording a reversible sensing performance.
Keywords fluorescent chemosensor      Cu2+      fluorescence quenching      intramolecular charge transfer      4-thiodiazole      
Issue Date: 05 June 2010
 Cite this article:   
Yunbao JIANG,Qingxian LIAO,Zhao LI, et al. A novel intramolecular charge transfer fluorescent chemosensor highly selective for Cu 2+ in neutral aqueous solutions[J]. Front. Chem. China, 2010, 5(2): 178-183.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-010-0114-8
https://academic.hep.com.cn/fcc/EN/Y2010/V5/I2/178
Zietz, B. P.; de Vergara, J. D.; Dunkelberg, H., Environ. Res. 2003, 92, 129―138

doi: 10.1016/S0013-9351(03)00037-9
Krämer, R., Angew. Chem. Int. Ed. 1998, 37, 772―773

doi: 10.1002/(SICI)1521-3773(19980403)37:6<772::AID-ANIE772>3.0.CO;2-Z
Ghosh, P.; Bharadwaj, P. K.; Mandal, S.; Ghosh, S., J. Am. Chem. Soc. 1996, 118, 1553―1554

doi: 10.1021/ja952520d
Dujols, V.; Ford, F.; Czarnik, A. W., J. Am. Chem. Soc. 1997, 119, 7386―7387

doi: 10.1021/ja971221g
Klein, G.; Kaufmann, D.; Schürch, S.; Reymond, J. L., Chem. Commun. 2001, 561―562

doi: 10.1039/b100535i
Kaur, S.; Kumar, S., Chem. Commun. (Camb.)2002, 2840―2841

doi: 10.1039/b209053h
Sun, X. Y.; Wen, Z. C.; Jiang, Y. B., Chin. J. Chem. 2003, 21, 1335―1338
Wu, Q. Y.; Anslyn, E. V., J. Am. Chem. Soc. 2004, 126, 14682―14683

doi: 10.1021/ja0401038
Kaur, S.; Kumar, S., Tetrahedron Lett. 2004, 45, 5081―5085

doi: 10.1016/j.tetlet.2004.04.185
Xu, Z. C.; Qian, X. H.; Cui, J. N., Org. Lett. 2005, 7, 3029―3032

doi: 10.1021/ol051131d
Xu, Z. C.; Xiao, Y.; Qian, X. H.; Cui, J. N.; Cui, D. W., Org. Lett. 2005, 7, 889―892

doi: 10.1021/ol0473445
Martínez, R.; Zapata, F.; Caballero, A.; Espinosa, A.; Tárraga, A.; Molina, P., Org. Lett. 2006, 8, 3235―3238

doi: 10.1021/ol0610791
Singhal, N. K.; Ramanujam, B.; Mariappanadar, V.; Rao, C. P., Org. Lett. 2006, 8, 3525―3528

doi: 10.1021/ol061274f
Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S. K., Org. Lett. 2006, 8, 371―374

doi: 10.1021/ol052282j
Xiang, Y.; Tong, A. J.; Jin, P. Y.; Ju, Y., Org. Lett. 2006, 8, 2863―2866

doi: 10.1021/ol0610340
Mei, Y. J.; Bentley, P. A.; Wang, W., Tetrahedron Lett. 2006, 47, 2447―2449

doi: 10.1016/j.tetlet.2006.01.091
Wen, Z. C.; Yang, R.; He, H.; Jiang, Y. B., Chem. Commun. 2006, 106―108

doi: 10.1039/b510546c
Chen, X. Q.; Ma, H. M., Anal. Chim. Acta2006, 575, 217―222

doi: 10.1016/j.aca.2006.05.097
Park, S. M.; Kim, M. H.; Choe, J. I.; No, K. T.; Chang, S. K., J. Org. Chem. 2007, 72, 3550―3553

doi: 10.1021/jo062516s
Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S., Org. Lett. 2008, 10, 213―216

doi: 10.1021/ol702558p
Mu, L.; Shi, W.; Chang, J. C.; Lee, S. T., Nano Lett. 2008, 8, 104―109

doi: 10.1021/nl072164k
Mashraqui, S. H.; Khan, T.; Sundaram, S.; Ghadigaonkar, S., Tetrahedron Lett. 2008, 49, 3739―3743

doi: 10.1016/j.tetlet.2008.04.041
Sheng, R.; Wang, P.; Gao, Y.; Wu, Y.; Liu, W.; Ma, J.; Li, H.; Wu, S., Org. Lett. 2008, 10, 5015―5018

doi: 10.1021/ol802117p
Kovács, J.; Mokhir, A., Inorg. Chem. 2008, 47, 1880―1882

doi: 10.1021/ic7022242
Li, A. F.; He, H.; Ruan, Y. B.; Wen, Z. C.; Zhao, J. S.; Jiang, Q. J.; Jiang, Y. B., Org. Biomol. Chem. 2009, 7, 193―200

doi: 10.1039/b811612a
Chen, X. Q.; Jia, J.; Ma, H. M.; Wang, S. J.; Wang, X. C., Anal. Chim.Acta2009, 632, 9―14

doi: 10.1016/j.aca.2007.08.025
Singh, A.; Yao, Q.; Tong, L.; Still, W. C.; Sames, D., Tetrahedron Lett. 2000, 41, 9601―9605

doi: 10.1016/S0040-4039(00)01714-7
Tang, B.; Niu, J.; Yu, C.; Zhuo, L.; Ge, J., Chem. Commun. 2005, 4184―4186

doi: 10.1039/b502978c
Shang, L.; Dong, S. J., J. Mater. Chem. 2008, 18, 4636―4640

doi: 10.1039/b810409c
Xia, Y.; Zhu, C., Analyst2008, 133, 928―932

doi: 10.1039/b801963k
Torrado, A.; Walkup, G. K.; Imperiali, B., J. Am. Chem. Soc. 1998, 120, 609―610

doi: 10.1021/ja973357k
Zheng, Y.; Huo, Q.; Kele, P.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M., Org. Lett. 2001, 3, 3277―3280

doi: 10.1021/ol0101638
Zheng, Y.; Gattás-Asfura, K.M.; Konka, V.; Leblanc, R. M., Chem. Commun.2002, 2350―2351

doi: 10.1039/b208012e
Zheng, Y.; Cao, X.; Orbulescu, J.; Konka, V.; Andreopoulos, F.M.; Pham, S. M.; Leblanc, R. M., Anal. Chem. 2003, 75, 1706―1712

doi: 10.1021/ac026285a
White, B. R.; Holcombe, J. A., Talanta2007, 71, 2015―2020

doi: 10.1016/j.talanta.2006.09.009
Kierat, R. M.; Krämer, R., Bioorg. Med. Chem. Lett. 2005, 15, 4824―4827

doi: 10.1016/j.bmcl.2005.07.042
Clark, M. A.; Duffy, K.; Tibrewala, J.; Lippard, S. J., Org. Lett. 2003, 5, 2051―2054

doi: 10.1021/ol0344570
Gunnlaugsson, T.; Leonard, J. P.; Murray, N. S., Org. Lett. 2004, 6, 1557―1560

doi: 10.1021/ol0498951
Kubo, Y.; Ishida, T.; Kobayashi, A.; James, T. D., J. Mater. Chem. 2005, 15, 2889―2895

doi: 10.1039/b501243k
Royzen, M.; Dai, Z.; Canary, J. W., J. Am. Chem. Soc. 2005, 127, 1612―1613

doi: 10.1021/ja0431051
Varazo, K.; Xie, F.; Gulledge, D.; Wang, Q., Tetrahedron Lett. 2008, 49, 5293―5296

doi: 10.1016/j.tetlet.2008.06.092
Liao, Q. X.; Li, A. F.; Li, Z.; Jiang, Y. B., Chem. J. Chinese Univ. 2008, 29, 2531
Demas, J. N.; Crosby, G. A., J. Phys. Chem. 1971, 75, 991―1024

doi: 10.1021/j100678a001
Gunnlaugsson, T.; Lee, T. C.; Parkesh, R., Org. Biomol. Chem. 2003, 1, 3265―3267

doi: 10.1039/b309569j
Ono, A.; Togashi, H., Angew. Chem. Int. Ed. 2004, 43, 4300―4302

doi: 10.1002/anie.200454172
Liu, J.; Lu, Y., Angew. Chem. Int. Ed. 2007, 46, 7587―7590

doi: 10.1002/anie.200702006
Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W., Chem. Rev. 2003, 103, 3899―4032

doi: 10.1021/cr940745l
[1] Yi-Bin RUAN, Stephane MAISONNEUVE, Juan XIE, Chun LI, Jie TANG, . Cooperative recognition of Cu 2+ based on amino acids tethered benzothiadiazoyl-bistriazoles[J]. Front. Chem. China, 2010, 5(2): 208-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed