Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (3) : 190-199    https://doi.org/10.1007/s11458-011-0243-8
REVIEW ARTICLE
Visible light responsive TiO2 modification with nonmetal elements
Mingce LONG(), Weimin CAI
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(564 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Developing visible light responsive (VLR) TiO2 photocatalysts is essential and attractive for the consideration of solar energy utilization. A large amount of work have shown TiO2 modified with several nonmetal elements having VLR performance, although according to DFT calculation, Asahi denied the VLR properties of fluorine, carbon, etc. in doping TiO2. Therefore, the origins of VLR activity desire further delicate discussion. In this mini-review, several strategies for VLR TiO2 modification have been introduced, including N doping or B/N codoping, surface modification with sensitizing matter such as carbonaceous or other organic substances, surface alkoxyls modification via a ligand-to-metal charge transfer (LMCT) process, and enhanced dye sensitization by fluorine modification. Besides doping, there are much more approaches to fabricate VLR TiO2 modified with nonmetal elements. However, it is still in demand to explore new methods to obtain more stable and efficient VLR TiO2 for practical application.

Keywords visible light      modified      doping      TiO2      photocatalysis      sensitization      ligand-to-metal charge transfer     
Corresponding Author(s): LONG Mingce,Email:long_mc@sjtu.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Mingce LONG,Weimin CAI. Visible light responsive TiO2 modification with nonmetal elements[J]. Front Chem Chin, 2011, 6(3): 190-199.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0243-8
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I3/190
Binding energy/eVSpecies
396-397N-Ti-N, nitride
399O-Ti-N (substitutional) or Ti-O-N-Ti (interstitial)
399-401N-N, N-O, N-C or adsorbed N2
407-408Nitrate, nitrite compounds
Tab.1  Relationship between nitrogen species and XPS binding energy of N
Fig.1  Calculated energy band structure of: (a) TiO and (b) N-doped TiO along the symmetry lines of the first Brillouin zone []
Fig.2  NMR spectrum of the sample S0 (xerogel ) []
Fig.3  Raman spectra of carbon modified S350 []
Fig.4  Scheme 1 Condensation products of melamine produced at 350°C-500°C in the absence of titania [].
Fig.5  Surface morphology of the samples (a) S-A; (b) S-C; (c) S-M []
Fig.6  Photodegradation of MO on different TiO samples under visible light (>400 nm) []
Fig.7  IR spectra of different TiO samples, with two magnified regions at: (I) 2980-2800 cm and (II) 1515-1200 cm []
Fig.8  Visible light degradation of MO on TiO samples (a) RH-80, (b) RH-240, (c)
RH-300 (with the photos of sample color) and IR spectra of different TiO samples (a) RH-80, (b) RH-240 and (c) RH-300 []
Fig.9  Scheme 2 Proposed visible light-induced photocatalytic mechanism on alkoxyl-modified TiO surface []
Fig.10  XRD patterns of different F-TiO samples: (1) TF0; (2) TF0.1; (3) TF0.5; (4) TF2. (The different value in TF (=0, 0.1, 0.5, 2) represents the molar ratio of F/Ti in the synthetic process) []
Fig.11  Methyl orange (MO) degradation on different F-TiO samples (a) under UV-visible light; (b) under visible light (catalyst dosage: 1 g/L; initial MO concentration: (a) 20 mg/L, (b) 10 mg/L) []
Fig.12  UV-Vis DRS of different F-TiO samples []
Treatment methodDegradation ratea
Effect of alkaline washwater-washed89.0%
NaOH-washed7.2%
Effect of heat treatmentuntreated89.0%
200°C-treated24.8%
300°C-treated20.8%
400°C-treated8.1%
Tab.2  The changes of visible light degradation of MO on sample TF2 after treatment with different methods [46]
Fig.13  Changes in XPS spectra on sample TF2 before and after further treatment (compared to sample TF0): (a) F 1s; (b) O 1s; (c) Ti 2p []
1 Long, M. C.; Cai, J.; Cai, W. M.; Chen, H.; Chai, X. Y., Prog. Chem. 2006, 18, 1065–1075
2 Ohtani, B., Chem. Lett. 2008, 37, 217–229
doi: 10.1246/cl.2008.216
3 Anpo, M., Bull. Chem. Soc. Jpn. 2004, 77, 1427–1442
doi: 10.1246/bcsj.77.1427
4 Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Science 2001, 293, 269–271
doi: 10.1126/science.1061051 pmid:11452117
5 Irie, H.; Washizuka, S.; Yoshino, N.; Hashimoto, K., Chem. Commun. (Camb.) 2003, 1298–1299
doi: 10.1039/b302975a pmid:12809239
6 Irie, H.; Watanabe, Y.; Hashimoto, K., J. Phys. Chem. B 2003, 107, 5483–5486
doi: 10.1021/jp030133h
7 Diwald, O.; Thompson, T. L.; Goralski, E. G.; Walck, S. D. Jr; Yates, J. T., J. Phys. Chem. B 2004, 108, 52–57
doi: 10.1021/jp030529t
8 Suda, Y.; Kawasaki, H.; Ueda, T., Thin Solid Films 2004, 453–454, 162–166
doi: 10.1016/j.tsf.2003.11.185
9 Chambers, S. A.; Cheung, S. H.; Shutthanandan, V.; Thevuthasan, S.; Bowman, M. K.; Joly, A. G., Chem. Phys. 2007, 339, 27–35
doi: 10.1016/j.chemphys.2007.04.024
10 Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y.; Chen, X., J. Phys. Chem. B 2004, 108, 1230–1240
doi: 10.1021/jp030843n
11 Burda, C.; Lou, Y. B.; Chen, X. B.; Samia, A. C. S.; Stout, J.; Gole, J. L., Nano Lett. 2003, 3, 1049–1051
doi: 10.1021/nl034332o
12 Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S., Appl. Catal. B 2003, 42, 403–409
doi: 10.1016/S0926-3373(02)00269-2
13 Wang, Z. P; Cai, W. M.; Hong, X. T.; Zhao, X.; Xu, F.; Cai, C. G., Appl. Catal. B 2005, 57, 223–231
doi: 10.1016/j.apcatb.2004.11.008
14 Tokudome, H.; Miyauchi, M., Chem. Lett. 2004, 33, 1108–1109
doi: 10.1246/cl.2004.1108
15 Matsumoto, T.; Iyi, N.; Kaneko, Y.; Kitamura, K.; Ishihara, S.; Takasu, Y.; Murakami, Y., Catal. Today 2007, 120, 226–232
doi: 10.1016/j.cattod.2006.07.047
16 Yin, S.; Aita, Y.; Komatsu, M.; Wang, J. S.; Tang, Q.; Sato, T., J. Mater. Chem. 2005, 15, 674–682
doi: 10.1039/b413377c
17 Cong, Y.; Zhang, J.; Chen, F.; Anpo, M., J. Phys. Chem. C 2007, 111, 6976–6982
doi: 10.1021/jp0685030
18 Yin, S.; Zhang, Q.; Saito, F.; Sato, T., Chem. Lett. 2003, 32, 358–359
doi: 10.1246/cl.2003.358
19 Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G., J. Am. Chem. Soc. 2006, 128, 15666–15671
doi: 10.1021/ja064164c pmid:17147376
20 Lee, J. Y.; Park, J.; Cho, J. H., Appl. Phys. Lett. 2005, 87, 011904
doi: 10.1063/1.1991982
21 Long, M. C.; Cai, W. M.; Wang, Z. P.; Liu, G. Z., Chem. Phys. Lett. 2006, 420, 71–76
doi: 10.1016/j.cplett.2005.12.036
22 Mrowetz, M.; Balcerski, W.; Colussi, A. J.; Hoffmann, M. R., J. Phys. Chem. B 2004, 108, 17269–17273
doi: 10.1021/jp0467090
23 Serpone, N., J. Phys. Chem. B 2006, 110, 24287–24293
doi: 10.1021/jp065659r pmid:17134177
24 Liu, G.; Zhao, Y.; Sun, C.; Li, F.; Lu, G. Q.; Cheng, H.M., Angew. Chem. Int. Ed. 2008, 47, 4516–4520 .
doi: 10.1002/anie.200705633
25 Li, J.; Xu, J.; Dai, W.L.; Li, H.; Fan, K., Appl. Catal. B 2008, 82, 233–243
doi: 10.1016/j.apcatb.2008.01.022
26 Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G., J. Am. Chem. Soc. 2004, 126, 4782–4783 .15080674
doi: 10.1021/ja0396753
27 Liu, H.; Gao, L., J. Am. Ceram. Soc. 2004, 87, 1582–1584
doi: 10.1111/j.1551-2916.2004.01582.x
28 Xu, J.H.; Li, J.; Dai, W.L.; Cao, Y.; Li, H.; Fan, K., Appl. Catal. B 2008, 79, 72–80
doi: 10.1016/j.apcatb.2007.10.008
29 Ozaki, H.; Iwamoto, S.; Inoue, M., J. Phys. Chem. C 2007, 111, 17061–17066
doi: 10.1021/jp0751211
30 Xie, Y.; Li, Y. Z.; Zhao, X. J., J. Mol. Catal. Chem. 2007, 277, 119–126
doi: 10.1016/j.molcata.2007.07.031
31 Wu, P. G.; Xie, R. C.; Imlay, K.; Shang, J. K., Environ. Sci. Technol. 2010, 44, 6992–6997
doi: 10.1021/es101343c pmid:20726520
32 Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N., J. Phys. Chem. B 1998, 102, 5845–5851
doi: 10.1021/jp980922c
33 Zhao, J. C.; Wu, T. X.; Wu, K. Q.; Oikawa, K.; Hidaka, H.; Serpone, N., Environ. Sci. Technol. 1998, 32, 2394–2400 .
doi: 10.1021/es9707926
34 Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Jr, Science 2002, 297, 2243–2245
doi: 10.1126/science.1075035 pmid:12351783
35 Toyoda, M.; Yano, T.; Tryba, B.; Mozia, S.; Tsumura, T.; Inagaki, M., Appl. Catal. B 2009, 88, 160–164
doi: 10.1016/j.apcatb.2008.09.009
36 Lettmann, C.; Hildenbrand, K.; Kisch, H.; Macyk, W.; Maier, W. F., Appl. Catal. B 2001, 32, 215–227
doi: 10.1016/S0926-3373(01)00141-2
37 Zhang, L.W.; Fu, H.B.; Zhu, Y.F., Adv. Funct. Mater. 2008, 18, 2180–2189
doi: 10.1002/adfm.200701478
38 Chen, C.; Long, M. C.; Zeng, H.; Cai, W. M.; Zhou, B. X.; Zhang, J. Y.; Wu, Y. H.; Ding, D. W.; Wu, D. Y., J. Mol. Catal. Chem. 2009, 314, 35–41
doi: 10.1016/j.molcata.2009.08.014
39 Mitoraj, D.; Kisch, H., Angew. Chem. Int. Ed. 2008, 47, 9975–9978
doi: 10.1002/anie.200800304
40 Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., Nat. Mater. 2009, 8, 76–80 18997776
doi: 10.1038/nmat2317
41 Wu, Y. H.; Long, M. C.; Chen, C.; Cai, W. M., Advanced Materials Research 2011, 214, 406–411
doi: 10.4028/www.scientific.net/AMR.214.406
42 Kim, S.; Choi, W., J. Phys. Chem. B 2005, 109, 5143–5149
doi: 10.1021/jp045806q pmid:16863177
43 Jiang, J.; Long, M.; Wu, D.; Cai, W., J. Mol. Catal. Chem. 2011, 335, 97–104
doi: 10.1016/j.molcata.2010.11.019
44 Li, D.; Haneda, H.; Labhsetwar, N. K.; Hishita, S.; Ohashi, N., Chem. Phys. Lett. 2005, 401, 579–584
doi: 10.1016/j.cplett.2004.11.126
45 Wang, Q.; Chen, C.; Zhao, D.; Ma, W.; Zhao, J., Langmuir 2008, 24, 7338–7345 .
doi: 10.1021/la703147q pmid:18553988
46 Jiang, J. J.; Long, M. C.; Wu, D. Y.; Cai, W. M., Acta Phys Chim Sin 2011, 27, 1149–1156
[1] Jianhui YAN, Qiang LIU, Luxiong GUAN, Feng LIANG, Haojie GU. Photocatalytic hydrogen generation of Pt-Sr(Zr1-xYx)O3-δ-TiO2 heterojunction under the irradiation of simulated sunlight[J]. Front Chem Chin, 2009, 4(2): 121-126.
[2] Min LI, Yuexiang LI, Shaoqin PENG, Gongxuan LU, Shuben LI. Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2[J]. Front Chem Chin, 2009, 4(1): 39-43.
[3] Ju GU, Qiang XIONG, Demin JIA, Yuanfang Luo, Rongshi Cheng. Effect of unsaturated hydroxyl-fatty acid modified nano-CaCO3 on the morphological and rheological behavior of PP[J]. Front Chem Chin, 2009, 4(1): 75-82.
[4] DU Pan, SHI Yanmao, WU Ping, ZHOU Yaoming, CAI Chenxin. Rapid functionalization of carbon nanotube and its electrocatalysis[J]. Front. Chem. China, 2007, 2(4): 369-377.
[5] HOU Xinggang, LIU Andong. Application of beam irradiation in preparation of visible light responsive TiO2 Films[J]. Front. Chem. China, 2007, 2(4): 387-392.
[6] SU Bitao, WANG Ke, BAI Jie, MU Hongmei, TONG Yongchun, MIN Shixiong, SHE Shixiong, LEI Ziqiang. Photocatalytic degradation of methylene blue on Fe3+-doped TiO2 nanoparticles under visible light irradiation[J]. Front. Chem. China, 2007, 2(4): 364-368.
[7] LONG Mingce, CAI Weimin, CHEN Heng, XU Jun. Preparation, characterization and photocatalytic activity of visible light driven chlorine-doped TiO2[J]. Front. Chem. China, 2007, 2(3): 278-282.
[8] SU Bitao, MIN Shixiong, SHE Shixiong, TONG Yongchun, BAI Jie. Synthesis and characterization of conductive polyaniline/TiO2 composite nanofibers[J]. Front. Chem. China, 2007, 2(2): 123-126.
[9] SONG Zhao, ZHAO Zixia, QIN Xia, HUANG Jiadong, SHI Haibin, WU Baoyan, CHEN Qiang. Highly sensitive choline biosensor based on carbon nanotube-modified Pt electrode combined with sol-gel immobilization[J]. Front. Chem. China, 2007, 2(2): 146-150.
[10] LIN Li, ZHOU Yi, ZHU Yuexiang, XIE Youchang. Effect of carbon content on photocatalytic activity of C/TiO2 composite[J]. Front. Chem. China, 2007, 2(1): 64-69.
[11] Hou Xinggang, Wu Xiaoling, Liu Andong. Studies on photocatalytic activity of Ag/TiO2 films[J]. Front. Chem. China, 2006, 1(4): 402-407.
[12] Siqingaowa, Zhaorigetu, Yao Hongxia, Garidi. Preparation and characterization of carbosilane dendrimer-bonded silica gel and its use in LC[J]. Front. Chem. China, 2006, 1(3): 324-328.
[13] Fa Wenjun, Li Ying, Gong Chuqing, Zhong Jiacheng. Photocatalytic Oxidation of Aniline in the Gas Phase Using Porous TiO2 Thin Films[J]. Front. Chem. China, 2006, 1(1): 63-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed