Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (4) : 287-299    https://doi.org/10.1007/s11458-011-0259-0
RESEARCH ARTICLE
Theoretical study on the hydration of hydrogen peroxide in terms of ab initio method and atom-bond electronegativity equalization method fused into molecular mechanics
Chunyang YU(), Lidong GONG(), Zhongzhi YANG()
School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
 Download: PDF(537 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the interaction between hydrogen peroxide (HP) and water were systemically studied by atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM) and ab initio method. The results show that the optimized geometries, interaction energies and dipole moments of hydrated HP clusters HP(H2O)n (n = 1–6) calculated by ABEEM/MM model are fairly consistent with the MP2/aug-cc-pVTZ//MP2/aug-cc-pVDZ results. The ABEEM/MM results indicate that n = 4 is the transition state structure from 2D planar structure to 3D network structure. The variations of the average hydrogen bond length with the increasing number of water molecules given by ABEEM/MM model agree well with those of ab initio studies. Moreover, the radial distribution functions (RDFs) of water molecule around HP in HP aqueous solution have been analyzed in detail. It can be confirmed that HP is a good proton donor and poor proton acceptor in aqueous solution by analysis of the RDFs.

Keywords ABEEM/MM model      ab initio calculation      hydrogen peroxide      water     
Corresponding Author(s): YU Chunyang,Email:chunyangyu@163.com; GONG Lidong,Email:gongjw@lnnu.edu.cn; YANG Zhongzhi,Email:zzyang@lnnu.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Chunyang YU,Lidong GONG,Zhongzhi YANG. Theoretical study on the hydration of hydrogen peroxide in terms of ab initio method and atom-bond electronegativity equalization method fused into molecular mechanics[J]. Front Chem Chin, 2011, 6(4): 287-299.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0259-0
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I4/287
Fig.1  The fitted hydrogen bond functions and . The fitted data are in parentheses.
Fig.2  The optimized geometries of HO–HO dimers by ABEEM/MM model, MP2/aug-cc-pVDZ, and MP2/aug-cc-pVDZ (CP) methods. All distances are in ? and angles are in degrees units.
ABEEM/MMMP2a)MP2b)MP2c)ADd)
W1-A-6.95-6.78-6.77-6.3970.17/0.18
W1-B-3.69-3.86-3.89-3.6890.17/0.20
Tab.1  Interaction energies of HO–HO dimer (kcal/mol).
W1-ACCa)W1-BCCa)Isolated H2O2
qO10.0241-0.00060.0244-0.0003qO1/qO30.0247
qH20.36950.03000.34510.0056qH2/qH40.3395
qO30.0230-0.00170.0245-0.0002qO1-O3-0.0361
qH40.3322-0.00730.34490.0054qO1-H2/qO3-H4-0.0416
qOw50.1009-0.01160.0973-0.0152qlpO1/qlpO3-0.1548
qHw60.28980.00010.35140.0617qlpO1’/qlpO3′-0.1498
qHw70.35470.06500.2593-0.0304Isolated H2O
qO1-H2-0.0432-0.0016-0.0418-0.0002qO10.1125
qO1-O3-0.0379-0.0018-0.0374-0.0013qH2/qH30.2897
qO3-H4-0.04150.0001-0.0418-0.0002qO1-H2/ qO1-H3-0.1552
qOw5-Hw6-0.14860.0066-0.14600.0092qlpO1/qlpO1’-0.1908
qOw5-Hw7-0.14680.0084-0.14920.0060
qlpO1-0.15120.0036-0.1537-0.0039
qlpO1’-0.1556-0.0058-0.1595-0.0047
qlpO3-0.1661-0.0163-0.15110.0037
qlpO3′-0.15320.0016-0.1537-0.0039
qlpOw5-0.2489-0.0581-0.2056-0.0148
qlpOw5′-0.2011-0.0103-0.2072-0.0164
Tab.2  ABEEM charge distributions of complexes W1-A and W1-B, isolated HO and HO
ABEEM/MMMP2a)MP2b)MP2c)ADd)
W2-cyclic-A-16.91-16.71-16.65-15.8130.20/0.26
W2-cyclic-B-15.81-15.35-15.31-14.6140.46/0.50
W2-cyclic-C-15.49-15.22-15.24-14.6020.27/0.25
W3-cyclic-A-27.69-26.78-26.72-25.7090.91/0.97
W3-cyclic-B-27.36-26.17-26.10-25.1261.19/1.26
W3-cyclic-C-26.14-26.09-26.07-25.0630.05/0.07
W3-cyclic-D-26.36-26.09-26.020.27/0.34
W4-cyclic-A-36.02-35.59-35.48-34.2120.43/0.54
W4-cyclic-B-36.04-35.59-35.48-34.2070.45/0.56
W4-open-C-35.21-35.48-35.35-34.0580.27/0.14
W4-prism-D-33.41-34.60-34.491.18/1.08
W5-prism-A-50.99-45.53-45.36-43.6515.46/5.63
W5-prism-B-46.61-44.69-44.59-42.8411.92/2.02
W5-prism-C-46.43-44.60-44.48-42.7481.83/1.95
W6-cage-A-55.86-56.48-56.29-55.1830.62/0.43
W6-cage-B-53.56-55.23-55.071.67/1.51
W6-cage-C-55.68-54.89-54.750.79/0.93
W6-cage-D-54.44-54.88-54.690.44/0.25
W6-cage-E-51.59-54.72-54.583.13/2.99
Tab.3  Interaction energies of HO(HO) ( = 2-6) clusters (kcal/mol)
Fig.3  The optimized geometries of HO(HO) clusters by ABEEM/MM model, MP2/aug-cc-pVDZ, and MP2/aug-cc-pVDZ (CP) methods. All distances are in ? and angles are in degrees units.
Fig.4  The optimized geometries of HO(HO) clusters by ABEEM/MM model, MP2/aug-cc-pVDZ, and MP2/aug-cc-pVDZ (CP) methods.
Fig.5  Variation of the average H-bond length with the increasing number of water molecules. (a) O-Hw (b) H-Ow. All distances are in ? units.
Fig.6  Correlation of dipole moments of HO(HO) (=1-6) clusters between and ABEEM/MM model.
Fig.7  Radial distribution functions at 298.15 K for the HP aqueous solution by ABEEM/MM/MD model. (a) g; (b) g.
W2-cyclic-AW2-cyclic-BW2-cyclic-CW2-cyclic-AW2-cyclic-BW2-cyclic-C
qO10.02420.02330.0231qOw5-Hw6-0.1452-0.1464-0.1452
qH20.38010.37580.3749qOw5-Hw7-0.1508-0.1496-0.1510
qO30.02140.02270.0232qOw8-Hw9-0.1501-0.1506-0.1495
qH40.33140.33260.3325qOw8-Hw10-0.1462-0.1451-0.1462
qOw50.10240.10320.1020qlpO1-0.1513-0.1556-0.1636
qHw60.41160.38050.4083qlpO1’-0.1552-0.1621-0.1561
qHw70.26670.28710.2646qlpO3-0.1691-0.1554-0.1559
qOw80.10340.10170.1028qlpO3′-0.1577-0.1563-0.1539
qHw90.27990.26730.2846qlpOw5-0.2649-0.2034-0.2678
qHw100.39080.40820.3822qlpOw5′-0.2198-0.2714-0.2109
qO1-H2-0.0434-0.0430-0.0430qlpOw8-0.2696-0.2157-0.2665
qO1-O3-0.0388-0.0404-0.0397qlpOw8’-0.2081-0.2658-0.2073
qO3-H4-0.0419-0.0415-0.0415
  Table S1. The charge distribution of HO(HO)
1 Baalen, C. V.; Marler, J. E., Nature 1966, 211, 951
doi: 10.1038/211951a0
2 Robbinmartin, L.; Damschen, D., Atmospheric Environment (1967) 1981, 15, 1615-1621
doi: 10.1016/0004-6981(81)90146-3
3 Hoffmann, M. R.; Edwards, J. O., J. Phys. Chem. 1975, 79, 2096-2098
doi: 10.1021/j100587a005
4 McArdle, J. V.; Hoffmann, M. R., J. Phys. Chem. 1983, 87, 5425-5429
doi: 10.1021/j150644a024
5 Reeves, C. E.; Penkett, S. A., Chem. Rev. 2003, 103, 5199-5218
doi: 10.1021/cr0205053 pmid:14664648
6 Pascual, L. M.; Daniele, M. B.; Pájaro, C.; Barberis, L., Contraception 2006, 73, 78-81
doi: 10.1016/j.contraception.2005.06.066 pmid:16371300
7 Katsinelos, P.; Kountouras, J.; Paroutoglou, G.; Beltsis, A.; Mimidis, K.; Pilpilidis, I.; Zavos, C., Eur. J. Gastroenterol. Hepatol. 2006, 18, 107-110
doi: 10.1097/00042737-200601000-00019 pmid:16357629
8 Shigematsu, M.; Kitajima, M.; Ogawa, K.; Higo, T.; Hotokebuchi, T., J. Arthroplasty 2005, 20, 639-646
doi: 10.1016/j.arth.2005.01.010 pmid:16310001
9 Kunen, S. M.; Lazrus, A. L.; Kok, G. L.; Heikes, B. G., J. Geophys. Res. 1983, 88, 3671-3674
doi: 10.1029/JC088iC06p03671
10 McArdle, J. V.; Hoffmann, M. R., J. Chem. Phys. 1983, 87, 5425-5429
doi: 10.1021/j150644a024
11 Varma, S. D.; Devamanoharan, P. S., Free Radic. Res. Commun. 1991, 14, 125-131
doi: 10.3109/10715769109094124 pmid:2060858
12 Sennikov, P. G.; Ignatov, S. K.; Schrems, O., ChemPhysChem 2005, 6, 392-412
doi: 10.1002/cphc.200400405 pmid:15799459
13 Du, D.; Fu, A.; Zhou, Z. y., J. Mol. Struct. THEOCHEM 2005, 717, 127-132
doi: 10.1016/j.theochem.2004.10.051
14 Kulkarni, A. D.; Pathak, R. K.; Bartolotti, L. J., J. Phys. Chem. A 2005, 109, 4583-4590
doi: 10.1021/jp044545h pmid:16833795
15 Kulkarni, A. D.; Pathak, R. K.; Bartolotti, L. J., J. Chem. Phys. 2006, 124, 214309
doi: 10.1063/1.2202098 pmid:16774409
16 Ju, X. H.; Xiao, J. J.; Xiao, H. M., J. Mol. Struct. THEOCHEM 2003, 626, 231-238
doi: 10.1016/S0166-1280(03)00124-6
17 Dobado, J. A.; Molina, J. M., J. Phys. Chem. 1994, 98, 1819-1825
doi: 10.1021/j100058a016
18 González, L.; Mó, O.; Yá?ez, M., J. Comput. Chem. 1997, 18, 1124-1135
doi: 10.1002/(SICI)1096-987X(19970715)18:9<1124::AID-JCC2>3.0.CO;2-T
19 Mó, O.; Yá?ez, M.; Rozas, I.; Elguero, J., Chem. Phys. Lett. 1994, 219, 45-52
doi: 10.1016/0009-2614(94)00059-X
20 Ferreira, C.; Martiniano, H. F. M. C.; Cabral, B. J. C.; Aquilanti, V., Int. J. Quantum Chem. 2011, 111, 1824-1835
doi: 10.1002/qua.22844
21 Ignatov, S. K.; Sennikov, P. G.; Jacobi, H. W.; Razuvaev, A. G.; Schrems, O., Phys. Chem. Chem. Phys. 2003, 5, 496-505
doi: 10.1039/b208256j
22 Akiya, N.; Savage, P. E., J. Phys. Chem. A 2000, 104, 4433-4440
doi: 10.1021/jp9920996
23 Vácha, R.; Slaví?ek, P.; Mucha, M.; Finlayson-Pitts, B. J.; Jungwirth, P., J. Phys. Chem. A 2004, 108, 11573-11579
doi: 10.1021/jp046268k
24 Martins-Costa, M. T. C.; Ruiz-López, M. F., Chem. Phys. 2007, 332, 341-347
doi: 10.1016/j.chemphys.2006.12.018
25 Mortier, W. J.; Ghosh, S. K.; Shankar, S., J. Am. Chem. Soc. 1986, 108, 4315-4320
doi: 10.1021/ja00275a013
26 Rappe, A. K.; Goddard, W. A., J. Phys. Chem. 1991, 95, 3358-3363
doi: 10.1021/j100161a070
27 Nalewajski, R. F., Int. J. Quantum Chem. 1992, 42, 243-265
doi: 10.1002/qua.560420202
28 Rick, S. W.; Stuart, S. J.; Berne, B. J., J. Chem. Phys. 1994, 101, 6141-6156
doi: 10.1063/1.468398
29 York, D. M.; Yang, W., J. Chem. Phys. 1996, 104, 159-172
doi: 10.1063/1.470886
30 Itskowitz, P.; Berkowitz, M. L., J. Phys. Chem. A 1997, 101, 5687-5691
doi: 10.1021/jp963962u
31 Liu, Y. P.; Kim, K.; Berne, B. J.; Friesner, R. A.; Rick, S. W., J. Chem. Phys. 1998, 108, 4739-4755
doi: 10.1063/1.475886
32 Banks, J. L.; Kaminski, G. A.; Zhou, R.; Mainz, D. T.; Berne, B. J.; Friesner, R. A., J. Chem. Phys. 1999, 110, 741-754
doi: 10.1063/1.478043
33 Chelli, R.; Ciabatti, S.; Cardini, G.; Righini, R.; Procacci, P., J. Chem. Phys. 1999, 111, 4218-4229
doi: 10.1063/1.479720
34 Chelli, R.; Procacci, P.; Righini, R.; Califano, S., J. Chem. Phys. 1981, 111, 8569-8575
doi: 10.1063/1.480198
35 Chelli, R.; Procacci, P., J. Chem. Phys. 2002, 117, 9175-9199
doi: 10.1063/1.1515773
36 Tabacchi, G.; Mundy, C. J.; Hutter, J.; Parrinello, M., J. Chem. Phys. 2002, 117, 1416-1433
doi: 10.1063/1.1487822
37 Patel, S.; Brooks, C. L. 3rd, J Comput Chem 2004, 25, 1-15
doi: 10.1002/jcc.10355 pmid:14634989
38 Chelli, R.; Barducci, A.; Bellucci, L.; Schettino, V.; Procacci, P., J. Chem. Phys. 2005, 123, 194109
doi: 10.1063/1.2110107 pmid:16321078
39 Chelli, R.; Pagliai, M.; Procacci, P.; Cardini, G.; Schettino, V., J. Chem. Phys. 2005, 122, 074504
doi: 10.1063/1.1851504 pmid:15743251
40 Chelli, R.; Schettino, V.; Procacci, P., J. Chem. Phys. 2005, 122, 234107
doi: 10.1063/1.1931653 pmid:16008430
41 Ishida, T.; Morita, A., J. Chem. Phys. 2006, 125, 074112
doi: 10.1063/1.2219746 pmid:16942327
42 Piquemal, J. P.; Chelli, R.; Procacci, P.; Gresh, N., J. Phys. Chem. A 2007, 111, 8170-8176
doi: 10.1021/jp072687g pmid:17665882
43 Lee Warren, G.; Davis, J. E.; Patel, S., J Chem Phys 2008, 128, 144110.-144123
doi: 10.1063/1.2872603 pmid:18412426
44 Zhong, Y.; Patel, S., J. Phys. Chem. B 2010, 114, 11076-11092
doi: 10.1021/jp101597r pmid:20687517
45 Yang, Z. Z.; Wang, C. S., J. Phys. Chem. A 1997, 101, 6315-6321
doi: 10.1021/jp9711048
46 Wang, C. S.; Yang, Z. Z., J. Chem. Phys. 1999, 110, 6189-6197
doi: 10.1063/1.478524
47 Cong, Y.; Yang, Z. Z., Chem. Phys. Lett. 2000, 316, 324-329
doi: 10.1016/S0009-2614(99)01289-0
48 Wu, Y.; Yang, Z. Z., J. Phys. Chem. A 2004, 108, 7563-7576
doi: 10.1021/jp0493881
49 Yang, Z. Z.; Wu, Y.; Zhao, D. X., J. Chem. Phys. 2004, 120, 2541-2557
doi: 10.1063/1.1640345 pmid:15268398
50 Li, X.; Yang, Z. Z., J. Phys. Chem. A 2005, 109, 4102-4111
doi: 10.1021/jp0458093 pmid:16833733
51 Li, X.; Yang, Z. Z., J. Chem. Phys. 2005, 122, 084514
doi: 10.1063/1.1853372
52 Yang, Z. Z.; Li, X., J. Phys. Chem. A 2005, 109, 3517-3520
doi: 10.1021/jp051106p pmid:16839014
53 Zhang, Q.; Yang, Z. Z., Chem. Phys. Lett. 2005, 403, 242-247
doi: 10.1016/j.cplett.2005.01.011
54 Yang, Z. Z.; Zhang, Q., J. Comput. Chem. 2006, 27, 1-10
doi: 10.1002/jcc.20317 pmid:16235260
55 Wang, F. F.; Gong, L. D.; Zhao, D. X., J. Mol. Struct. THEOCHEM 2009, 909, 49-56
doi: 10.1016/j.theochem.2009.05.019
56 Wang, F. F.; Zhao, D. X.; Gong, L. D., Theor. Chem. Acc. 2009, 124, 139-150
doi: 10.1007/s00214-009-0592-2
57 Wang, F. F.; Zhao, D. X.; Yang, Z. Z., Chem. Phys. 2009, 360, 141-149
doi: 10.1016/j.chemphys.2009.04.022
58 Zhao, D. X.; Liu, C.; Wang, F. F.; Yu, C. Y.; Gong, L. D.; Liu, S. B.; Yang, Z. Z., J. Chem. Theory Comput. 2010, 6, 795-804
doi: 10.1021/ct9006647
59 Yu, C. Y.; Yang, Z. Z., J. Phys. Chem. A 2011, 115, 2615-2626
doi: 10.1021/jp111284t pmid:21388113
60 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Revision D.01 ed.; Gaussian, Inc.: Wallingford, CT, 2004.
61 Boys, S. F.; Bernardi, F., Mol. Phys. 1970, 19, 553-566
doi: 10.1080/00268977000101561
62 Wang, C. S.; Li, S. M.; Yang, Z. Z., J. Mol. Struct. THEOCHEM 1998, 430, 191-199
doi: 10.1016/S0166-1280(98)90239-1
63 Steinbach, P. J.; Brooks, B. R., J. Comput. Chem. 1994, 15, 667-683
doi: 10.1002/jcc.540150702
64 Kurinovich, M. A.; Lee, J. K., J. Am. Chem. Soc. 2000, 122, 6258-6262
doi: 10.1021/ja000549y
[1] Saba SAEED, Hajira TAHIR, Muhammad SULTAN, Qazi JAHANZEB. Effect of foreign ions for the determination of metal ion in the presence of surfactants[J]. Front Chem Chin, 2011, 6(3): 243-247.
[2] Rakesh KUMAR, Lina ZHANG, . Investigation into ramie whisker reinforced arylated soy protein composites[J]. Front. Chem. China, 2010, 5(1): 104-108.
[3] Yuzun FAN, Dongmei LI, Minghui DENG, Yanhong LUO, Qingbo MENG, . An overview on water splitting photocatalysts[J]. Front. Chem. China, 2009, 4(4): 343-351.
[4] SHI Yali, ZHANG Ping, CAI Yaqi, MOU Shifen. An improved ion chromatographic method for determination of trace levels of perchlorate in environmental water[J]. Front. Chem. China, 2008, 3(2): 203-208.
[5] MA Jie, WU Hai, ZHU Yaqi. Electrochemical behavior of hydrogen peroxide sensor based on new methylene blue as mediator[J]. Front. Chem. China, 2007, 2(3): 326-330.
[6] NIU Zhenbin, ZHANG Xingyuan, DAI Jiabing, ZHANG Heping. Investigation of ultraviolet curable waterborne polyurethane acrylate dispersion based on hydroxyl-terminated polybutadiene[J]. Front. Chem. China, 2007, 2(2): 151-155.
[7] PAN Haihua, WU Tao, TANG Ruikang, TAO Jinhui. Molecular simulation of water behaviors on crystal faces of hydroxyapatite[J]. Front. Chem. China, 2007, 2(2): 156-163.
[8] SHI Xianying, WEI Junfa. Synthesis of bis-quaternary ammonium peroxotungstates (peroxomolybdates) and their catalytic activity in oxidation of alcohols by aqueous H2O2[J]. Front. Chem. China, 2007, 2(1): 70-73.
[9] Fa Wenjun, Li Ying, Gong Chuqing, Zhong Jiacheng. Photocatalytic Oxidation of Aniline in the Gas Phase Using Porous TiO2 Thin Films[J]. Front. Chem. China, 2006, 1(1): 63-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed