Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2009, Vol. 3 Issue (4) : 457-464    https://doi.org/10.1007/s11704-009-0035-1
Research articles
Knowledge fusion framework based on Web page texts
Sikang HU1,Yuanda CAO2,
1.School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China; 2.School of Software, Beijing Institute of Technology, Beijing 100081, China;
 Download: PDF(333 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the proliferation ofWeb page texts, it is important to fuse these texts to useful documents that users need. However, there is still no complete and unified theoretical model for studying the research issues including redundancy, localization, and fuzziness existing in the process of fusing Web page texts. This paper proposes a fusion framework calledWeb Pages Knowledge Fusion Framework (WPKFF) to synthesize the knowledge of Web page texts. First, sentences in Web page texts are extracted and transformed into triple semantic net as knowledge representation. Then a semantic description of attribute fusion rules, description information fusion rules and attribute-value and description information fusion rules are defined in WPKFF. These rules are used to fuse the attributes of same domain concepts in triple semantic net. The features of attributes include description (string) and value data (number). The results of the experiments indicate that the fusion framework is a feasible model in terms of precision and recall.
Keywords fusion framework      fusion rules      Web text formal semanteme      knowledge acquisition      
Issue Date: 05 December 2009
 Cite this article:   
Sikang HU,Yuanda CAO. Knowledge fusion framework based on Web page texts[J]. Front. Comput. Sci., 2009, 3(4): 457-464.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0035-1
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I4/457
Feigenbaun E. Somechallenges and grand challenges for computational intelligence. Journal of the ACM, 2003, 50(1): 32―40

doi: 10.1145/602382.602400
Lin C Y, Hovy E. From single to multi-documentsummarization: a prototype system and its evaluation. In: Proceedings of the 40th AnnualMeeting of the Association for ComputationalLinguistics (ACL). Philadelphia, 2002, 457―464
Radev D R, Jing H Y, Budzikowska M. Centroid-based summarization of multiple documents: sentenceextraction, utility-based evaluation, and user studies.In: Proceedings of ANLP/NAACL 2000 Workshop. Seattle, 2000, 21―29
Fung P, Ngai G. Combining optimal clusteringand hidden markov model for extractive. In: Proceedingsof the ACL 2003 workshop on multilingual summarization and questionanswering. Sapporo, 2003: 21―28
Hunter A, Summerton R. Fusion rules for context-dependentaggregation of structured news reports. Journal of Applied Non-classical Logic, 2004, 14(3): 329―366

doi: 10.3166/jancl.14.329-366
Hunter A, Liu W. Fusion rules for merginguncertain information. Information Fusion, 2006, 7(1): 97―134
Hunter A, Summerton R. A knowledge-based approachto merging information, Knowledge-BasedSystems. 2006, 19(8): 647―674

doi: 10.1016/j.knosys.2006.05.007
Hunter A, Summerton R. Propositional fusion rules. In: Proceedings of LNCS. Springer, 2003, 2711: 502―514
Chuang W T, Yang J. Extracting sentence segmentsfor text summarization: a machine learning approach. In: Proceedings of the 23rd annual international ACM SIGIR, 2000, 152―159
Grégoire É, Sofiane A. Fusing syntax and semanticsin knowledge fusion. In: Proceedings ofEUSFLAT Conference, 2001, 414―417
Sui Y F, Gao Y, Cao C G. Ontologies, frames and logical theories in NKI. Journal of Software, 2005, 12(16): 2045―2053

doi: 10.1360/jos162045
Anokhin P, Motro A. Fusionplex: resolution ofdata inconsistencies in the integration of heterogeneous Iinformationsources. Technical Report ISE-TR-03-06,Information and Software Engineering Dept., George Mason Univ., Fairfax,Virginia, 2003
Berberich K, Vazirgiannis M, Weikum G. T-Rank: time-aware authority ranking. In: Proceedings of WAW, 2004, 131―142
Xie N F. Knowledge Fusion and Synchronization Methods Based on Semantic WebTechnologies. Ph. D. dissertation, GraduateSchool of the Chinese Academy of Sciences, 2005 (in Chinese)
[1] Tao HAN, Hailong SUN, Yangqiu SONG, Yili FANG, Xudong LIU. Find truth in the hands of the few: acquiring specific knowledge with crowdsourcing[J]. Front. Comput. Sci., 2021, 15(4): 154315-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed