Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2009, Vol. 3 Issue (3) : 417-420    https://doi.org/10.1007/s11704-009-0050-2
Research articles
Improved collaborative filtering algorithm based on heat conduction
Qiang GUO 1, Jianguo LIU 2, Binghong WANG 3,
1.Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Switzerland; 2.Research Center of Complex Systems Science, Shanghai University of Science and Technology, Shanghai 200093, China;Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Switzerland; 3.Research Center of Complex Systems Science, Shanghai University of Science and Technology, Shanghai 200093, China;Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
 Download: PDF(301 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, we present an improved collaborative filtering (ICF) algorithm by using the heat diffusion process to generate the user correlation. This algorithm has remarkably higher accuracy than the standard collaborative filtering (CF) using Pearson correlation. Furthermore, we introduce a free parameter β to regulate the contributions of objects to user correlation. The numerical simulation results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and diversity.
Keywords recommendation algorithm      collaborative filtering      heat conduction      
Issue Date: 05 September 2009
 Cite this article:   
Qiang GUO,Binghong WANG,Jianguo LIU. Improved collaborative filtering algorithm based on heat conduction[J]. Front. Comput. Sci., 2009, 3(3): 417-420.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0050-2
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I3/417
Pastor-Satorras R, Vespignani A. Evolution and Structure ofthe Interent. Canbridge: Cambridge UniversityPress, 2004
Broder A, Kumar R, Moghoul F, et al. Graph structure in the web. Computer Networks, 2000, 33: 309―320

doi: 10.1016/S1389-1286(00)00083-9
Resnick P, Varian H R. Recommender systems. Communications of the ACM, 1997, 40: 56―58

doi: 10.1145/245108.245121
Brin S, Page L. The anatomy of a large-scalehypertextual Web search engine. ComputerNetworks and ISDN Systems, 1998, 30: 107―117

doi: 10.1016/S0169-7552(98)00110-X
Kleinberg J M. Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999, 46: 604―632

doi: 10.1145/324133.324140
Schafer J B, Konstan J A, Riedl J. E-commerce recommender applications. Data Mining and Knowledge Discovery, 2001, 5: 115―152

doi: 10.1023/A:1009804230409
Linden G, Smith B, York J. Amazon.com recommendations: item-toitem collaborativefiltering. IEEE Internet Computing, 2003, 7: 76―80

doi: 10.1109/MIC.2003.1167344
Billsus D, Brunk C A, Evans C, et al. Adaptive interfaces for ubiquitous web access. Communications of the ACM, 2002, 45: 34―38

doi: 10.1145/506218.506240
Burke R. Hybridrecommender systems: survey and experiments. User Modeling and User-Adapted Interaction, 2002, 12: 331―370

doi: 10.1023/A:1021240730564
Adomavicius G, Tuzhilin A. Toward the next generationof recom mender systems: a survey of the state-of-the-art and possibleextensions. IEEE Transactions on Knowledgeand Data Engineering, 2005, 17: 734―749

doi: 10.1109/TKDE.2005.99
Liu J-G, Chen M Z Q, Chen J, et al. Recent advances in personal recommendation systems. International Journal of Information and SystemsScience, 2009, 5(2): 230―247
Herlocker J L, Konstan J A, Terveen K, et al. Evaluating collaborative filtering recommendersystems. ACM Transactions on InformationSystems, 2004, 22: 5―53

doi: 10.1145/963770.963772
Konstan J A, Miller B N, Maltz D, et al. GroupLens: applying collaborative filteringto usenet news. Communications of the ACM, 1997, 40: 77―87

doi: 10.1145/245108.245126
Balabanovíc M, Shoham Y. Learning information retrievalagents: experiments with automated web browsing. Communications of the ACM, 1997, 40: 66―70
Pazzani M J. Detecting change in categorical data: mining contrast sets. Artificial Intelligence Review, 1999, 13: 393―408

doi: 10.1023/A:1006544522159
Billsus D, Pazzani M. Learning collaborative informationfilters. In: Proceedings of the FifteenthInternational Conference on Machine Learning. Madison, 1998
Sarwar B, Karypis G, Konstan J, Riedl J. Applicationof dimensionality reduction in recommender system–A case study. In: Proceedings of the WebKDD 2000 Web Mining forE-Commerce Workshop at ACM SIGKDD. Boston, 2000, TR 00―043
Ren J, Zhou T, Zhang Y C. Information filtering via self-consistent refinement. Europhysics Letters, 2008, 80: 58007

doi: 10.1209/0295-5075/82/58007
Goldberg K, Roeder T, Gupta D, et al. Eigentaste: a constant time collaborative filteringalgorithm. Information Retrieval, 2001, 4: 133―151

doi: 10.1023/A:1011419012209
Zhang Y C, Blattner M, Yu Y K. Heat conduction process on community networks as a recommendationmodel. Physical Review Letters, 2007, 99: 154301

doi: 10.1103/PhysRevLett.99.154301
Zhang Y C, Medo M, Ren J, et al. Recommendation model based on opinion diffusion. Europhysics Letters, 2007, 80: 68003

doi: 10.1209/0295-5075/80/68003
Zhou T, Ren J, Medo M, et al. Bipartite network projection and personal recommendation. Physical Review E, 2007, 76: 046115

doi: 10.1103/PhysRevE.76.046115
Zhou T, Jiang L L, Su R Q, et al. Effect of initial configuration on network-basedrecommendation. Europhysics Letters, 2008, 81:58004

doi: 10.1209/0295-5075/81/58004
Huang Z, Chen H, Zeng D. Applying associative retrieval techniques to alleviatethe sparsity problem in collaborative filtering. ACMTransactions on Information Systems, 2004, 22: 116―142

doi: 10.1145/963770.963775
Sarwar B, Karypis G, Konstan J, et al. Analysis of recommendation algorithms for E-commerce. In: Proceedings of the ACM Conference on ElectronicCommerce. ACM, New York, 2000, 158―167
Liu J G, Wang B H, Guo Q. Improved collaborative filtering algorithm via informationtransformation. International Journal ofModern Physics C, 2009, 20: 285―293

doi: 10.1142/S0129183109013613
Liu J G, Zhou T, Wang B H, et al. Highly accurate recommendation algorithm basedon high-order similarities. 2008, arXiv: 0808.3726
[1] Jia HE, Fuzhen ZHUANG, Yanchi LIU, Qing HE, Fen LIN. Bayesian dual neural networks for recommendation[J]. Front. Comput. Sci., 2019, 13(6): 1255-1265.
[2] Min GAO, Bin LING, Linda YANG, Junhao WEN, Qingyu XIONG, Shun LI. From similarity perspective: a robust collaborative filtering approach for service recommendations[J]. Front. Comput. Sci., 2019, 13(2): 231-246.
[3] Zhoujun LI, Haijun ZHANG, Senzhang WANG, Feiran HUANG, Zhenping LI, Jianshe ZHOU. Exploit latent Dirichlet allocation for collaborative filtering[J]. Front. Comput. Sci., 2018, 12(3): 571-581.
[4] Shaha AL-OTAIBI, Mourad YKHLEF. Hybrid immunizing solution for job recommender system[J]. Front. Comput. Sci., 2017, 11(3): 511-527.
[5] Yuan GUAN,Shimin CAI,Mingsheng SHANG. Recommendation algorithm based on item quality and user rating preferences[J]. Front. Comput. Sci., 2014, 8(2): 289-297.
[6] Min XIE, Laks V. S. LAKSHMANAN, Peter T. WOOD. Composite recommendations: from items to packages[J]. Front Comput Sci, 2012, 6(3): 264-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed