Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2014, Vol. 8 Issue (2) : 289-297    https://doi.org/10.1007/s11704-013-3012-7
RESEARCH ARTICLE
Recommendation algorithm based on item quality and user rating preferences
Yuan GUAN,Shimin CAI,Mingsheng SHANG()
Web Sciences Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
 Download: PDF(501 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recommender systems are one of the most important technologies in e-commerce to help users filter out the overload of information. However, current mainstream recommendation algorithms, such as the collaborative filtering CF family, have problems such as scalability and sparseness. These problems hinder further developments of recommender systems. We propose a new recommendation algorithm based on item quality and user rating preferences, which can significantly decrease the computing complexity. Besides, it is interpretable and works better when the data is sparse. Through extensive experiments on three benchmark data sets, we show that our algorithm achieves higher accuracy in rating prediction compared with the traditional approaches. Furthermore, the results also demonstrate that the problem of rating prediction depends strongly on item quality and user rating preferences, thus opens new paths for further study.

Keywords recommendation algorithm      item quality      user rating preferences      RMSE     
Corresponding Author(s): Mingsheng SHANG   
Issue Date: 24 June 2014
 Cite this article:   
Yuan GUAN,Shimin CAI,Mingsheng SHANG. Recommendation algorithm based on item quality and user rating preferences[J]. Front. Comput. Sci., 2014, 8(2): 289-297.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-3012-7
https://academic.hep.com.cn/fcs/EN/Y2014/V8/I2/289
1 AdomaviciusG, TuzhilinA. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749
doi: 10.1109/TKDE.2005.99
2 RicciF, RokachL, ShapiraB, KantorP B. Recommender Systems Handbook. Springer, 2010
3 LüL Y, MedoM, YeungC H, ZhangY C, ZhangZ K, ZhouT. Recommender systems. Physics Reports. 2012, 519: 1-49
doi: 10.1016/j.physrep.2012.02.006
4 EkstrandM D, RiedlJ, KonstanJ A. Collaborative filtering recommender systems. Foundations and Trends in Human-Computer Interaction, 2011, 4(2): 175-243
5 DrorG, KoenigsteinN, KorenY. Web-scale media recommendation systems. Proceedings of the IEEE, 2012, 100(9): 2722-2736
doi: 10.1109/JPROC.2012.2189529
6 TakácsG, PilászyI, NémethB, TikkD. Scalable collaborative filtering approaches for large recommender systems. Journal of Machine Learning Research, 2009, 10: 626-656
7 KorenY, BellR, VolinskyC. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30-37
doi: 10.1109/MC.2009.263
8 ZhouT, RenJ, MedoM, ZhangY C. Bipartite network projection and personal recommendation. Physical Review E. 2007, 76(4): 046115
doi: 10.1103/PhysRevE.76.046115
9 ZhangY C, BlattnerM, YuY K. Heat conduction process on community networks as a recommendation model. Physical Review Letters, 2007, 99(15): 154301-1-154301-4
doi: 10.1103/PhysRevLett.99.154301
10 ZhouT, KuscsikZ, LiuJ G, MedoM, WakelingJ R, ZhangY C. Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings of National Academy of Sciences, 2010, 107(10): 4511-4515
doi: 10.1073/pnas.1000488107
11 HuangZ, ChenH, ZengD. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems, 2004, 22(1): 116-142
doi: 10.1145/963770.963775
12 YangS H, LongB, SmolaA, SadagopanN, ZhengZ, ZhaH. Like like alike-joint friendship and interest propagation in social networks. In: Proceedings of the 20th International Conference on World Wide Web. ACM Press. 2011: 537-546
13 ShangM S, ZhangZ K, ZhouT, ZhangY C. Collaborative filtering with diffusion-based similarity on tripartite graphs. Physica A, 2010, 389(6): 1259-1264
doi: 10.1016/j.physa.2009.11.041
14 CachedaF, CarneiroV, Fernĺćndez,D, FormosoV. Comparison of collaborative filtering algorithms: Limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM Transactions on the Web. 2011, 5(1), Article 2
15 ResnickP, IacovouN, SuchakM, BergstromP, RiedlJ. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work. 1994, 175-186
16 LindenG, SmithB, YorkJ. Amazon.com recommendations: item-toitem collaborative filtering. IEEE Internet Computing. 2003, 7(1): 76-80
doi: 10.1109/MIC.2003.1167344
17 HerlockerJ L, KonstanJ A, TerveenL G, RiedlJ T. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 2004, 22(1): 5-53
doi: 10.1145/963770.963772
18 YuY K, ZhangY C, LauretiP, MoretL. Decoding information from noisy, redundant, and intentionally distorted sources. Physica A, 2006, 371(2): 732-744
doi: 10.1016/j.physa.2006.04.057
19 YangZ M, ZhangZ K, ZhouT. Anchoring bias in online voting. Europhysics Letters. 2012, 100(6): 68002-1-68002-6
[1] Jia HE, Fuzhen ZHUANG, Yanchi LIU, Qing HE, Fen LIN. Bayesian dual neural networks for recommendation[J]. Front. Comput. Sci., 2019, 13(6): 1255-1265.
[2] Min XIE, Laks V. S. LAKSHMANAN, Peter T. WOOD. Composite recommendations: from items to packages[J]. Front Comput Sci, 2012, 6(3): 264-277.
[3] Qiang GUO , Jianguo LIU , Binghong WANG , . Improved collaborative filtering algorithm based on heat conduction[J]. Front. Comput. Sci., 2009, 3(3): 417-420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed