Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci Chin    0, Vol. Issue () : 66-78    https://doi.org/10.1007/s11704-010-0161-9
RESEARCH ARTICLE
Soft spectral clustering ensemble applied to image segmentation
Jianhua JIA1,2(), Bingxiang LIU1, Licheng JIAO2
1. School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333002, China; 2. Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China and Institute of Intelligent Information Processing, Xidian University, Xi'an 710071, China
 Download: PDF(677 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An unsupervised learning algorithm, named soft spectral clustering ensemble (SSCE), is proposed in this paper. Until now many proposed ensemble algorithms cannot be used on image data, even images of a mere 256 × 256 pixels are too expensive in computational cost and storage. The proposed method is suitable for performing image segmentation and can, to some degree, solve some open problems of spectral clustering (SC). In this paper, a random scaling parameter and Nystr?m approximation are applied to generate the individual spectral clusters for ensemble learning. We slightly modify the standard SC algorithm to aquire a soft partition and then map it via a centralized logcontrast transform to relax the constraint of probability data, the sum of which is one. All mapped data are concatenated to form the new features for each instance. Principal component analysis (PCA) is used to reduce the dimension of the new features. The final aggregated result can be achieved by clustering dimension-reduced data. Experimental results, on UCI data and different image types, show that the proposed algorithm is more efficient compared with some existing consensus functions.

Keywords spectral clustering (SC)      Nystr?m approximation      centralized logcontrast transform      principal component analysis (PCA)      ensemble learning     
Corresponding Author(s): JIA Jianhua,Email:jjh163yx@163.com   
Issue Date: 05 March 2011
 Cite this article:   
Jianhua JIA,Bingxiang LIU,Licheng JIAO. Soft spectral clustering ensemble applied to image segmentation[J]. Front Comput Sci Chin, 0, (): 66-78.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-010-0161-9
https://academic.hep.com.cn/fcs/EN/Y0/V/I/66
Fig.1  Framework of spectral clustering ensemble
Fig.1  Framework of spectral clustering ensemble
Data setsNumber of clustersDimensionNumber of samplesNormalized
IrisSonarWineBreast_cancerChess (ks-vs-kp)32322460139361502081786833196NoYesYesNoNo
Tab.1  Properties of Selected UCI Data Sets
Fig.2  Error rate of data sets of UCI data sets using different clustering algorithm Chess (ks-vs-kp). (a) Iris data set, (b) Sonar data set, (c) Wine data set, (d) Breast_cancer data set, (e) Chess (ks-vs-kp)
Fig.2  Error rate of data sets of UCI data sets using different clustering algorithm Chess (ks-vs-kp). (a) Iris data set, (b) Sonar data set, (c) Wine data set, (d) Breast_cancer data set, (e) Chess (ks-vs-kp)
Fig.3  Error rate of large sample data set (Chess (ks-vs-kp) Data sets) of UCI data sets. (a) Average value and standard deviation of error rates by SC_Nys with the changing of the scaling parameters over Chess (ks-vs-kp) data set; (b) average value of SC_Nys and SSCE with different intervals of scaling parameter. The dashed line denotes the standard deviation of error rate by SSCE
Fig.3  Error rate of large sample data set (Chess (ks-vs-kp) Data sets) of UCI data sets. (a) Average value and standard deviation of error rates by SC_Nys with the changing of the scaling parameters over Chess (ks-vs-kp) data set; (b) average value of SC_Nys and SSCE with different intervals of scaling parameter. The dashed line denotes the standard deviation of error rate by SSCE
Data setsIntervals and stepsConsensus function
CSPAHGPAMCLAMixtureSSCE
Iris0.2 ∶ 0.02 ∶ 10.12830.36410.11330.16750.1200
Sonar0.5 ∶ 0.02 ∶ 20.42650.49520.45940.45730.4472
Wine0.2 ∶ 0.02 ∶ 20.07120.44930.04160.06420.0406
Breast-cancer0.1 ∶ 0.05 ∶ 20.14890.49600.03000.03110.0335
Chess (ks-vs-kp)0.1 ∶ 0.02 ∶ 2-0.49970.39060.39200.3851
Tab.2  Comparison of average error rate
Data setConsensus function
CSPAHGPAMCLAMixSSCE
Iris1.4841.4371.4205.0941.391
Sonar5.6385.5135.57011.7945.469
Wine2.2342.1092.14111.8051.921
Breast_cancer6.2976.0006.21915.5605.920
Chess (ks-vs-kp)-198.000197.500357.969191.344
Tab.3  CPU time of single runs of different consensus functions on the UCI data sets (s)
Fig.4  Performance of SSCE while varying the number of constituent clusterings. (a) Iris data; (b) Chess (ks-vs-kp) data
Fig.4  Performance of SSCE while varying the number of constituent clusterings. (a) Iris data; (b) Chess (ks-vs-kp) data
Fig.5  Results of 4-class synthesis texture image segmentation. (a) Original image; (b) real segmentation; (c) result of SC_Nys (92.32%); (d )result of MSCE (94.99%); (e) result of SSCE (97.10%)
Fig.5  Results of 4-class synthesis texture image segmentation. (a) Original image; (b) real segmentation; (c) result of SC_Nys (92.32%); (d )result of MSCE (94.99%); (e) result of SSCE (97.10%)
Fig.6  Results of some synthesis texture images segmentation. (a) Original images; (b) results of SC_Nys; (c) results of MSCE; (d) results of SSCE
Fig.6  Results of some synthesis texture images segmentation. (a) Original images; (b) results of SC_Nys; (c) results of MSCE; (d) results of SSCE
Fig.7  Results of Ku-band SAR image segmentation. (a) Original image; (b) result of SC_Nys; (c) result of MSCE; (d) result of SSCE
Fig.7  Results of Ku-band SAR image segmentation. (a) Original image; (b) result of SC_Nys; (c) result of MSCE; (d) result of SSCE
Fig.8  Results of X-band SAR image segmentation. (a) Original image; (b) result of SC_Nys; (c) result of MSCE; (d) result of the proposed algorithm
Fig.8  Results of X-band SAR image segmentation. (a) Original image; (b) result of SC_Nys; (c) result of MSCE; (d) result of the proposed algorithm
Fig.9  (a) SAR image-A (mountain/plain); (b )result of SC_Nys; (c) result of MSCE; (d) result of SSCE; (e) SAR image-B (arass/forest); (f) result of SC_Nys; (g) result of MSCE; (h) result of SSCE
Fig.9  (a) SAR image-A (mountain/plain); (b )result of SC_Nys; (c) result of MSCE; (d) result of SSCE; (e) SAR image-B (arass/forest); (f) result of SC_Nys; (g) result of MSCE; (h) result of SSCE
1 Duda R O, Hart P E, Stork D G. Pattern classification. New York: Wiley Interscience, 2001
2 Dietterich T G. Machine-learning research: four current directions. AI Magazine , 1997, 18(4): 97–136
3 Zhou Z H, Wu J, Tang W. Ensembling neural networks: many could be better than all. Artificial Intelligence , 2002, 137(1-2): 239–263
doi: 10.1016/S0004-3702(02)00190-X
4 Tang W, Zhou Z. Bagging-based selective clustering ensemble. Journal of Software , 2005, 34(12): 496–502
doi: 10.1360/jos160496
5 Strehl A, Ghosh J. Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research , 2002, 3(12): 583–617
6 Liu X, Wang Z, Chen W, Li X. Remote sensing images hierarchical clustering using Markov random field and generalized Gaussian mixture models. Journal of Remote Sensing , 2007, 11(6): 838–844
7 Fan G, Xia X. A joint multicontext and multiscale approach to Bayesian image segmentation. IEEE Transactions on Geoscience and Remote Sensing , 2001, 39(12): 2680–2688
doi: 10.1109/36.975002
8 Topchy A P, Law M H C, Jain A K, Fred A L. Analysis of consensus partition in cluster ensemble. In: Proceedings of the 4th IEEE International Conference on Data Mining . 2004, 225–232
9 Munkres J. Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics , 1957, 5(1): 32–38
doi: 10.1137/0105003
10 MacQueen J B. Some methods for classification and analysis of multivariate observation. In: Proceeding of the 5th Berkeley Symp. on Mathematical Statistics and Probability . Berkeley: University of California Press, 1967, 281–297
11 Ding C H Q, He X, Zha H, Gu M, Simon H D. A min-max cut algorithm for graph partitioning and data clustering. In: Proceedings of IEEE International Conference on Data Mining . 2001, 107–114
12 Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2000, 22(8): 888–905
doi: 10.1109/34.868688
13 Ng A, Jordan M, Weiss Y. On spectral clustering: analysis and an algorithm. Advance of Neural Information Processing System . Cambridge: MIT Press, 2002, 849–856
14 Wang S, Siskind J M. Image segmentation with ratio cut. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2003, 25(6): 675–690
doi: 10.1109/TPAMI.2003.1201819
15 Bach F R, Jordan M I. Blind one-microphone speech separation: a spectral learning approach. In: Proceedings of Advance of Neural Information Processing System (NIPS) . Cambridge: MIT Press, 2005
16 Odobez J M, Gatica-Perez D, Guillemot M. Video shot clustering using spectral methods. In: Proceedings of International Workshop on Content-based Multimedia Indexing . Rennes, 2003, 94–102
17 Zhang X, Jiao L, Liu F, Bo L, Gong M. Spectral clustering ensemble applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing , 2008, 46(7): 2126–2136
doi: 10.1109/TGRS.2008.918647
18 Dhillon I S. Co-clustering documents and words using bipartite spectral graph parititioning. In: Proceedings of Knowledge Discovery and Data Mine . 2001, 269–274
19 Topchy A, Jain A K, Punch W. Clustering ensembles: models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2005, 27(12): 1866–1881
20 Topchy A, Jain A K, Punch W. Combining multiple weak clusterings. In: Proceedings of IEEE International Conference on Data Mining. Melbourne , 2003, 331–338
21 Fred A L N, Jain A K. Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2005, 27(6): 835–850
doi: 10.1109/TPAMI.2005.113
22 Fred A L N. Data clustering using evidence accumulation. In: Proceeding of the 16th International Conference on Pattern Recognition . Quebec, 2002, 276–280
23 Fred A L N. Finding consistent clusters in data partitions. In: Proceeding of the 3d International Workshop on Multiple Classifier System . Roli J K F, ed. LNCS 2364, 2001, 309–318
24 Fern X Z, Brodley C E. Random projection for high dimensional data clustering: a cluster ensemble approach. In: Proceedings of the 20th International Conference on Machine Learning (ICML). Washington DC , 2003, 186–193
25 Fischer B, Buhmann J M. Path-based clustering for grouping of smooth curves and texture segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2003, 25(4): 513–518
doi: 10.1109/TPAMI.2003.1190577
26 Minaei-Bidgoli B, Topchy A, Punch W F. Ensembles of partitions via data resampling. In: Proceedings of International Conference on Information Technology, ITCC. LasVegas , 2004, 188–192
27 Fred A L N. Finding consistent clusters in data partitions. In: Proceedings of the 3d International Workshop on Multiple Classifier System . Roli J K F (ed.), LNCS 2364, 2001, 309–318
28 Wang X, Yang C Y, Zhou J. Clustering aggregation by probability accumulation. Pattern Recognition , 2009, 42(5): 668–675
doi: 10.1016/j.patcog.2008.09.013
29 Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing , 1995, 20(1): 359–392
doi: 10.1137/S1064827595287997
30 Karypis G, Aggarwal R, Kumar V, Shekhar S. Multilevel hypergraph partitioning: application in VLSI domain. In: Proceedings of ACM/IEEE Design Automation Conference , 1997, 526–529
31 Fern X Z, Brodley C E. Solving cluster ensemble problems by bipartite graph partitioning. In: Proceedings of the 21st International Conference on Machine Learning (ICML) . Canada, 2004
32 Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series A (General) , 1977, 39(1): 1–38
33 Punera K, Ghosh J. Soft cluster ensembles. In: Oliveira J V, Pedrycz W, eds. Advances in Fuzzy Clustering and its Applications . Wiley, 2007, 69–90
doi: 10.1002/9780470061190.ch4
34 Gao Y, Gu S, Xia L, . Fuzzy clustering ensemble based on mutual information. In: Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal , 2006, 476–481 ().
35 Yu Z, Deng Z, Wong H, . Fuzzy cluster ensemble and its application on 3d head model classification. In: Proceedings of International Joint Conference on Neural Networks (IJCNN) . 2008, 569–576
36 Zhai S, Luo B, Guo Y. Fuzzy clustering ensemble based on dual boosting. In: Proceedings of 4th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) . 2007
doi: 10.1109/FSKD.2007.316
37 Fowlkes C, Belongie S, Chung F, Malik J. Spectral grouping using the Nystr?m method. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004, 26(2): 214–225
doi: 10.1109/TPAMI.2004.1262185
38 Zhang X. Classification and Segmentation of SAR Images Based on Selective Feature Fusion and Ensemble Learning. Xi'an: Xidian University, 2006
39 Barthelemy J P, Leclerc B. The median procedure for partitions. In: Cox I J, Hansen P, Julesz B, eds. Partitioning Data Sets. American Mathematical Society, Providence , 1995, 3–34
40 Aitchison J. The statistical analysis of compositional data. Journal of the Royal Statistical Society, Series B. Methodological , 1982, 44(2): 139–177
41 Billheimer D, Guttorp P, Fagan W F. Statistical analysis and interpretation of discrete compositional data. National Center for Statistics and the Environment (NRCSE) Technical Report NRCSE-TRS, 11, 1998
42 Blake C L, Merz C J. UCI repository of machine learning databases.1998, available from: http://www.ics.uci.edu/mlearn/MLRepository
43 Hansen L, Salamon P. Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1990, 12(10): 993–1001
doi: 10.1109/34.58871
44 Melville P, Mooney R J. Constructing diverse classifier ensembles using artificial training examples. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence . 2003, 505–510
45 Opitz D, Maclin R. Popular ensemble methods: an empirical study. Journal of Artificial Intelligence Research , 1999, 11(8): 169–198
[1] Baiyou QIAO, Zhongqiang WU, Ling MA, Yicheng Zhou, Yunjiao SUN. Effective ensemble learning approach for SST field prediction using attention-based PredRNN[J]. Front. Comput. Sci., 2023, 17(1): 171601-.
[2] Juntao CHEN, Quan ZOU, Jing LI. DeepM6ASeq-EL: prediction of human N6-methyladenosine (m 6A) sites with LSTM and ensemble learning[J]. Front. Comput. Sci., 2022, 16(2): 162302-.
[3] Xibin DONG, Zhiwen YU, Wenming CAO, Yifan SHI, Qianli MA. A survey on ensemble learning[J]. Front. Comput. Sci., 2020, 14(2): 241-258.
[4] Tao SUN, Zhi-Hua ZHOU. Structural diversity for decision tree ensemble learning[J]. Front. Comput. Sci., 2018, 12(3): 560-570.
[5] Bo SUN, Haiyan CHEN, Jiandong WANG, Hua XIE. Evolutionary under-sampling based bagging ensemble method for imbalanced data classification[J]. Front. Comput. Sci., 2018, 12(2): 331-350.
[6] Qian LI, Gang LI, Wenjia NIU, Yanan CAO, Liang CHANG, Jianlong TAN, Li GUO. Boosting imbalanced data learning with Wiener process oversampling[J]. Front. Comput. Sci., 2017, 11(5): 836-851.
[7] Lean YU, Shouyang WANG, Kin Keung LAI. Developing an SVM-based ensemble learning system for customer risk identification collaborating with customer relationship management[J]. Front Comput Sci Chin, 2010, 4(2): 196-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed