Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    0, Vol. Issue () : 462-468    https://doi.org/10.1007/s11704-012-1097-z
RESEARCH ARTICLE
Bus holding strategy based on shuffled complex evolution method
Yu JIANG(), Shuli GONG
College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 Download: PDF(389 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Holding strategies are among the most commonly used operation control strategies. This paper presents an improved holding strategy. In the strategy, a mathematical model aiming to minimize the total waiting times of passengers at the current stop and at the following stops is constructed and a new heuristic algorithm, shuffled complex evolution method developed at the University of Arizona (SCEUA), is adopted to optimize the holding times of early buses. Results show that the improved holding strategy can provide better performance compared with a traditional schedulebased holding strategy and no-control strategy. The computational results are also evidence of the feasibility of using SCE-UA in optimizing the holding times of early buses at a stop.

Keywords public transportation      improved holding strategy      schedule      heuristic algorithm-shuffled complex evolution     
Corresponding Author(s): JIANG Yu,Email:jiangyu07@nuaa.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Yu JIANG,Shuli GONG. Bus holding strategy based on shuffled complex evolution method[J]. Front Comput Sci, 0, (): 462-468.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-012-1097-z
https://academic.hep.com.cn/fcs/EN/Y0/V/I/462
1 Yu B, Lam W H K, Tam M L. Bus arrival time prediction at bus stop with multiple routes. Transportation Research Part C: Emerging Technologies , 2011, 19(6): 1157-1170
2 Osuna E E, Newell G F. Control strategies for an idealized public transportation system. Transportation Science , 1972, 6(1): 52-72
doi: 10.1287/trsc.6.1.52
3 Abkowitz M, Eiger A, Engelstein I. Optimal control of headway cariation on trasit routes. Journal of Advanced Transportation , 1986, 20(1): 73-88
doi: 10.1002/atr.5670200106
4 Dessouky M, Hall R, Nowroozi A, Mourikas K. Bus dispatching at timed transfer transit stations using bus tracking technology. Transportation Research Part C: Emerging Technologies , 1999, 7(4): 187-208
doi: 10.1016/S0968-090X(99)00019-4
5 Dessouky M, Hall R, Zhang L, Singh A. Real-time control of buses for schedule coordination at a terminal. Transportation Research Part A: Policy and Practice , 2003, 37(2): 145-164
doi: 10.1016/S0965-8564(02)00010-1
6 Zolfaghari S, Azizi N, Jaber M Y. A model for holding strategy in public transit systems with real-time information. International Journal of Transport Management , 2004, 2(2): 99-110
doi: 10.1016/j.ijtm.2005.02.001
7 O’ell S, Wilson N H M. Optimal real-time control strategies for rail transit operations during disruptions. Lecture Notes in Economics and Mathematical Systems , 1999, 471: 299-323
doi: 10.1007/978-3-642-85970-0_15
8 Lin G, Liang P, Schonfeld P, Larson R. Adaptive control of transit operations. Final Report for Project MD-26-7002, University of Maryland , 1995
9 Newell G F. The rolling horizon scheme of traffic signal control. Transportation Research Part A: Policy and Practice , 1998, 32(1): 39-44
doi: 10.1016/S0965-8564(97)00017-7
10 Barnett A. On controlling randomness in transit operations. Transportation Science , 1974, 8(2): 102-116
doi: 10.1287/trsc.8.2.102
11 Koffman D. A simulation study of alternative real-time bus headway control strategies. Transportation Research Record , 1978, 663: 41-46
12 Yu B, Yang Z. A dynamic holding strategy in public transit systems with real-time information. Applied Intelligence , 2009, 31(1): 69-80
doi: 10.1007/s10489-007-0112-9
13 Yu B, Yang Z, Yao J. Genetic algorithm for bus frequency optimization. Journal of Transportation Engineering , 2010, 136(6): 576-583
doi: 10.1061/(ASCE)TE.1943-5436.0000119
14 Duan Q, Sorooshian S, Gupta V K. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research , 1992, 28(4): 1015-1031
doi: 10.1029/91WR02985
15 Duan Q, Gupta V K, Sorooshian S. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications , 1993, 76(3): 501-521
doi: 10.1007/BF00939380
16 Duan Q, Sorooshian S, Gupta V K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology , 1994, 158(3-4): 265-284
doi: 10.1016/0022-1694(94)90057-4
17 Nelder J A,Mead R. A simplex method for function minimization. The Computer Journal , 1965, 7(4): 308-313
18 Price WL. Global optimization algorithm for a CAD workstation. Journal of Optimization Theory and Applications , 1987, 55(1): 133-146
doi: 10.1007/BF00939049
19 Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975
20 Yu B, Yang Z. An ant colony optimization model: the period vehicle routing problem with time windows. Transportation Research Part E: Logistics and Transportation Review , 2011, 47(2): 166-181
doi: 10.1016/j.tre.2010.09.010
21 Nunoo C, Mrawira D M. Shuffled complex evolution algorithms in infrastructure works programming. Journal of Computing in Civil Engineering , 2004, 18(3): 257-266
doi: 10.1061/(ASCE)0887-3801(2004)18:3(257)
22 Abdulhai B, Sheu J B, Recker W. Simulation of ITS on the irvine FOT area using “Paramics 1.5” scalable microscopic traffic simulator: phase I: model calibration and validation. California PATH Research Report UCB-ITS-PRR-99-12 , 1999
23 Sheu J B, Chou Y H, Chen A. Stochastic modeling and real-time prediction of incident effects on surface street traffic congestion. Applied Mathematical Modelling , 2004, 28(5): 445-468
doi: 10.1016/j.apm.2003.10.004
24 Yu B, Yao J, Yang Z. An improved headway-based holding strategy for bus transit. Transportation Planning and Technology , 2010, 33(3): 329-341
doi: 10.1080/03081061003732417
25 Yu B, Yang Z, Cheng C. Optimizing the distribution of shopping centers with parallel genetic algorithm. Engineering Applications of Artificial Intelligence , 2007, 20(2): 215-223
doi: 10.1016/j.engappai.2006.06.015
[1] Shuai XUE, Shang ZHAO, Quan CHEN, Zhuo SONG, Shanpei CHEN, Tao MA, Yong YANG, Wenli ZHENG, Minyi GUO. Kronos: towards bus contention-aware job scheduling in warehouse scale computers[J]. Front. Comput. Sci., 2023, 17(1): 171101-.
[2] Xuchao XIE, Liquan XIAO, Dengping WEI, Qiong LI, Zhenlong SONG, Xiongzi GE. Pinpointing and scheduling access conflicts to improve internal resource utilization in solid-state drives[J]. Front. Comput. Sci., 2019, 13(1): 35-50.
[3] Quan LIU, Xudong YANG, Ling JING, Jin LI, Jiao LI. A parallel scheduling algorithm for reinforcement learning in large state space[J]. Front Comput Sci, 2012, 6(6): 631-646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed