Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    2012, Vol. 6 Issue (5) : 611-620    https://doi.org/10.1007/s11704-012-1176-1
REVIEW AETICLE
Social influence and spread dynamics in social networks
Xiaolong ZHENG1, Yongguang ZHONG2, Daniel ZENG1, Fei-Yue WANG1()
1. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; 2. Department of Management Science and Engineering, Qingdao University, Qingdao 266071, China
 Download: PDF(382 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Social networks often serve as a critical medium for information dissemination, diffusion of epidemics, and spread of behavior, by shared activities or similarities between individuals. Recently, we have witnessed an explosion of interest in studying social influence and spread dynamics in social networks. To date, relatively little material has been provided on a comprehensive review in this field. This brief survey addresses this issue.We present the current significant empirical studies on real social systems, including network construction methods, measures of network, and newly empirical results.We then provide a concise description of some related social models from both macro- and micro-level perspectives. Due to the difficulties in combining real data and simulation data for verifying and validating real social systems, we further emphasize the current research results of computational experiments. We hope this paper can provide researchers significant insights into better understanding the characteristics of personal influence and spread patterns in large-scale social systems.

Keywords social networks      spread dynamics      social influence      computational experiment     
Corresponding Author(s): WANG Fei-Yue,Email:feiyue.wang@ia.ac.cn   
Issue Date: 01 October 2012
 Cite this article:   
Xiaolong ZHENG,Yongguang ZHONG,Daniel ZENG, et al. Social influence and spread dynamics in social networks[J]. Front Comput Sci, 2012, 6(5): 611-620.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-012-1176-1
https://academic.hep.com.cn/fcs/EN/Y2012/V6/I5/611
1 Watts D J, Strogatz S H. Collective dynamics of “small-world” networks. Nature , 1998, 393(6684): 440-442
doi: 10.1038/30918
2 Song C, Havlin S, Makse H A. Self-similarity of complex networks. Nature , 2005, 433(7024): 392-395
doi: 10.1038/nature03248
3 Kossinets G, Watts D J. Empirical analysis of an evolving social network. Science , 2006, 311(5757): 88-90
doi: 10.1126/science.1116869
4 Centola D. The spread of behavior in an online social network experiment. Science , 2010, 329(5996): 1194-1197
doi: 10.1126/science.1185231
5 Barabási A L, Albert R. Emergence of scaling in random networks. Science , 1999, 286(5439): 509-512
doi: 10.1126/science.286.5439.509
6 Cui K, Cao Z, Zheng X, Zeng K, Zheng M. A geospatial analysis on the potential value of news comments in infectious disease surveillance. In: Proceedings of the 6th Pacific Asia Conference on Intelligence and Security Informatics . 2011, 85-93
7 Lind P G, da Silva L R, Andrade J S Jr, Herrmann H J . Spreading gossip in social networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2007, 76(3): 036117
doi: 10.1103/PhysRevE.76.036117
8 Moreno Y, Nekovee M, Pacheco A F. Dynamics of rumor spreading in complex networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2004, 69(6): 066130
doi: 10.1103/PhysRevE.69.066130
9 Bakshy E, Hofman J M, Mason W A, Watts D J. Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the 4th ACMInternational Conference onWeb Search and DataMining . 2011, 65-74
10 Chierichetti F, Lattanzi S, Panconesi A. Rumor spreading in social networks. Theoretical Computer Science , 2011, 412(24): 2602-2610
doi: 10.1016/j.tcs.2010.11.001
11 Bharathi S, Kempe D, Salek M. Competitive influence maximization in social networks. In: Proceedings of the 3rd International Conference on Internet and Network Economics . 2007: 306-311
12 Eagle N, Pentland A, Lazer D. Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(36): 15274-15278
doi: 10.1073/pnas.0900282106
13 Castellano C, Fortunato S, Loreto V. Statistical physics of social dynamics. Reviews of Modern Physics , 2009, 81(2): 591-646
doi: 10.1103/RevModPhys.81.591
14 Lazer D, Pentland A, Adamic L, Aral S, Barabási A-L, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M, . Computational social science. Science , 2009, 323(5915): 721-723
doi: 10.1126/science.1167742
15 Zheng X, Zeng D, Sun A, Luo Y, Wang Q, Wang F Y. Network-based analysis of Beijing SARS data. In: Proceedings of the 2008 International Workshop on Biosurveillance and Biosecurity . 2008: 64-73
doi: 10.1007/978-3-540-89746-0_7
16 Newman M E J, Watts D J, Strogatz S H. Random graph models of social networks. Proceedings of the National Academy of Sciences of the United States of America , 2002, 99(Suppl 1): 2566-2572
doi: 10.1073/pnas.012582999
17 Liljeros F, Edling C R, Amaral L A N, Stanley H E, Aberg Y. The web of human sexual contacts. Nature , 2001, 411(6840): 907-908
doi: 10.1038/35082140
18 Leskovec J, Backstrom L, Kumar R, Tomkins A. Microscopic evolution of social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2008, 462-470
doi: 10.1145/1401890.1401948
19 Szell M, Lambiotte R, Thurner S. Multirelational organization of largescale social networks in an online world. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(31): 13636-13641
doi: 10.1073/pnas.1004008107
20 Zheng X, Zeng D, Cao Z, Wang Q, Wang F. Evolutionary patterns on SARS networks. In: Proceedings of the 2009 International Workshop on Biosurveillance and Biosecurity . 2009
21 Newman M E J. The structure and function of complex networks. SIAM Review , 2003, 45(2): 167-256
doi: 10.1137/S003614450342480
22 Albert R, Barabási A L. Statistical mechanics of complex networks. Reviews of Modern Physics , 2002, 74(1): 47-97
doi: 10.1103/RevModPhys.74.47
23 Barrat A, Barthélemy M, Vespignani R P S. The architecture of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America , 2004, 101(11): 3747-3752
doi: 10.1073/pnas.0400087101
24 Newman M E J, Strogatz S H, Watts D J. Random graphs with arbitrary degree distributions and their applications. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2001, 64(2): 026118
doi: 10.1103/PhysRevE.64.026118
25 Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A. Characterization and modeling of weighted networks. Physica A: Statistical Mechanics and Its Applications , 2005, 346(1-2): 34-43
doi: 10.1016/j.physa.2004.08.047
26 Latora V, Marchiori M. Efficient behavior of small-world networks. Physical Review Letters , 2001, 87(19): 198701
doi: 10.1103/PhysRevLett.87.198701
27 Tang L, Liu H. Community detection and mining in social media. Synthesis Lectures on Data Mining and Knowledge Discovery , 2010, 2(1): 1-137
doi: 10.2200/S00298ED1V01Y201009DMK003
28 Wasserman S, Faust K. Social Networks Analysis: Methods and Applications. Cambridge: Cambridge University Press, 1994
doi: 10.1017/CBO9780511815478
29 Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. Complex networks: structure and dynamics. Physics Reports , 2006, 424(4-5): 175-308
doi: 10.1016/j.physrep.2005.10.009
30 Newman M E J, Girvan M. Finding and evaluating community structure in networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2004, 69(2): 026113
doi: 10.1103/PhysRevE.69.026113
31 Newman M E J. Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103(23): 8577-8582
doi: 10.1073/pnas.0601602103
32 Deng C, Zheng S, He X F, Yan X F, Han J W. Mining hidden community in heterogeneous social networks. In: Proceedings of the 3rd International Workshop on Link Discovery . 2005, 58-65
33 Santo F. Community detection in graphs. Physics Reports , 2010, 486(3-5): 75-174
34 Takaffoli M, Sangi F, Fagnan J, Z?ιane O R. Community evolution mining in dynamic social networks. Procedia-Social and Behavioral Sciences , 2011, 22: 49-58 .
doi: 10.1016/j.sbspro.2011.07.055
35 Rogers E M. Diffusion of Innovations. New York: Free Press, 1995 36.
36 Milgram S. The small-wolrd problem. Psychology Today , 1967, 1(1): 61-67
37 Dodds P S, Muhamad R, Watts D J. An experimental study of search in global social networks. Science , 2003, 301(5634): 827-829
doi: 10.1126/science.1081058
38 Costa L D F, Oliveira O N, Travieso G, Rodrigues F A, Villas Boas P, Antiqueira L, Viana M P, Correa Rocha L. Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Advances in Physics , 2011, 60(3): 329-412
doi: 10.1080/00018732.2011.572452
39 Wang J C, Chiu C C. Recommending trusted online auction sellers using social network analysis. Expert Systems with Applications , 2008, 34(3): 1666-1679
doi: 10.1016/j.eswa.2007.01.045
40 Palla G, Barabasi A L, Vicsek T. Quantifying social group evolution. Nature , 2007, 446(7136): 664-667
doi: 10.1038/nature05670
41 Bilke S, Peterson C. Topological properties of citation and metabolic networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2001, 64(3): 036106
doi: 10.1103/PhysRevE.64.036106
42 Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A. Self-similar community structure in a network of human interactions. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2003, 68(6): 065103
doi: 10.1103/PhysRevE.68.065103
43 Zheng X, Li H, Sun A. Exploring social dynamics in online bookmarking systems. In: Proceedings of 2008 International Workshop on Social Computing . 2008, 390-391
44 Mislove A, Marcon M, Gummadi K P, Druschel P, Bhattacharjee B. Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement . 2007, 29-42 .
doi: 10.1145/1298306.1298311
45 Wang Y, Zeng D, Zheng X, Wang F. Analyzing online media as complex network. Complex Systems and Complexity Science , 2008, 6(3): 11-21
46 Onnela J P, Saram?ki J, Hyv?nen J, Szabó G, Lazer D, Kaski K, Kertész J, Barabási A L. Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences of the United States of America , 2007, 104(18): 7332-7336
doi: 10.1073/pnas.0610245104
47 Arenas A, Danon L, Díaz-Guilera A, Gleiser P M, Guimerá R. Community analysis in social networks. The European Physical Journal BCondensed Matter and Complex Systems , 2004, 38(2): 373-380 .
doi: 10.1140/epjb/e2004-00130-1
48 Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America , 2002, 99(12): 7821-7826
doi: 10.1073/pnas.122653799
49 Newman M E J, Park J. Why social networks are different from other types of networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2003, 68(3): 036122
doi: 10.1103/PhysRevE.68.036122
50 Backstrom L, Huttenlocher D, Kleinberg J, Lan X. Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2006, 44-54
doi: 10.1145/1150402.1150412
51 Lin Y R, Chi Y, Zhu S, Sundaram H, Tseng B L. Facetnet: a framework for analyzing communities and their dynamic networks. In: Proceedings of the 17th International Conference on World Wide Web . 2008, 685-694
doi: 10.1145/1367497.1367590
52 Wu B, Ye Q, Yang S, Wang B. Group CRM: a new telecom CRM framework from social network perspective. In: Proceedings of the 1st ACMInternational Workshop on Complex NetworksMeet Information & Knowledge Management . 2009, 3-10
53 Bikhchandani S, Hirshleifer D, Welch I. A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy , 1992, 100(5): 992-1026
doi: 10.1086/261849
54 Fowler J H, Christakis N A. Cooperative behavior cascades in human social networks. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(12): 5334-5338
doi: 10.1073/pnas.0913149107
55 Christakis N A, Fowler J H. The spread of obesity in a large social network over 32 years. New England Journal of Medicine , 2007, 357(4): 370-379
doi: 10.1056/NEJMsa066082
56 Fowler J H, Christakis N A. The dynamic spread of happiness in a large social network. British Medical Journal (Clinical Research Ed.) , 2008, 337: a2338
doi: 10.1136/bmj.a2338
57 Singh J. Collaborative networks as determinants of knowledge diffusion patterns. Management Science , 2005, 51(5): 756-770
doi: 10.1287/mnsc.1040.0349
58 Christakis N A, Fowler J H. The collective dynamics of smoking in a large social network. New England Journal of Medicine , 2008, 358(21): 2249-2258
doi: 10.1056/NEJMsa0706154
59 Rosenquist J N, Murabito J, Fowler J H, Christakis N A. The spread of alcohol consumption behavior in a large social network. Annals of Internal Medicine , 2010, 152(7): 426-433
60 Adar E, Adar E, Adamic L A. Tracking information epidemics in blogspace. In: Proceedings of 2005 IEEE/WIC/ACM International Conference on Web Intelligence . 2005, 207-214
doi: 10.1109/WI.2005.151
61 Gruhl D, Guha R V, Liben-Nowell D, Tomkins A. Information diffusion through blogspace. In: Proceedings of the 13th International Conference on World Wide Web . 2004, 491-501
62 Leskovec J, McGlohon M, Faloutsos C, Glance N S, Hurst M. Patterns of cascading behavior in large blog graphs. In: Proceedings of 7th SIAM International Conference on Data Mining . 2007
63 Leskovec J, Adamic L A, Huberman B A. The dynamics of viral marketing. ACM Transactions on the Web , 2007, 1(1): 5
doi: 10.1145/1232722.1232727
64 Anagnostopoulos A, Kumar R, Mahdian M. Influence and correlation in social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2008, 7-15
doi: 10.1145/1401890.1401897
65 Aral S, Muchnik L, Sundararajan A. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(51): 21544-21549
doi: 10.1073/pnas.0908800106
66 Newman M E J. The spread of epidemic disease on networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2002, 66(1): 016128
doi: 10.1103/PhysRevE.66.016128
67 Moreno Y, Vázquez A. Disease spreading in structured scale-free networks. The European Physical Journal B: Condensed Matter and Complex Systems , 2003, 31(2): 265-271
doi: 10.1140/epjb/e2003-00031-9
68 Ancel L W, Newman M E J, Martin M, Schrag S. Applying network theory to epidemics: control measures for Mycoplasma pneumoniae outbreaks. Emerging Infectious Diseases , 2001, 9(2): 204-210
69 Wang J, Liu Z, Xu J. Epidemic spreading on uncorrelated heterogenous networks with non-uniform transmission. Physica A: Statistical Mechanics and its Applications , 2007, 382(2): 715-721
70 Zanette D. Dynamics of rumor propagation on small-world networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2002, 65(4): 041908
doi: 10.1103/PhysRevE.65.041908
71 Bass F M. A new product growth for model consumer durables. Management Science , 1969, 15(5): 215-227
doi: 10.1287/mnsc.15.5.215
72 Mahajan V, Muller E, Bass F M. New product diffusion models in marketing: a review and directions for research. Journal of Marketing , 1990, 54(1): 1-26
doi: 10.2307/1252170
73 Jackson M O. Social and Economic Networks. Princeton: Princeton University Press , 2008
74 Kempe D. Structure and Dynamics of Information in Networks. 2011
75 Young H P. The evolution of conventions. Econometrica: Journal of the Econometric Society , 1993, 61(1): 57-84
doi: 10.2307/2951778
76 Krapivsky P L, Redner S, Leyvraz F. Connectivity of growing random networks. Physical Review Letters , 2000, 85(21): 4629-4632
doi: 10.1103/PhysRevLett.85.4629
77 Dorogovtsev S N, Mendes J F F. Evolution of reference networks with aging. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics , 2000, 62(2): 1842-1845
doi: 10.1103/PhysRevE.62.1842
78 Zheng X, Zeng D, Li H, Wang F. Analyzing open-source software systems as complex networks. Physica A: Statistical Mechanics and its Applications , 2008, 387(24): 6190-6200
79 Granovetter M. Threshold models of collective behavior. American Journal of Sociology , 1978, 83(6): 1420-1443
doi: 10.1086/226707
80 Schelling T. Micromotives and macrobehavior. New York: Norton, 1978
81 Macy I W. Chains of cooperation: threshold effects in collective action. American Sociological Review , 1991, 56(6): 730-747
doi: 10.2307/2096252
82 Macy M W, Willer R. From factors to actors: computational sociology and agent-based modeling. Annual Review of Sociology , 2002, 28(1): 143-166
doi: 10.1146/annurev.soc.28.110601.141117
83 Berger E. Dynamic monopolies of constant size. Journal of Combinatorial Theory Series B , 2001, 83(2): 191-200
doi: 10.1006/jctb.2001.2045
84 Kempe D, Kleinberg J M, Tardos é. Influential nodes in a diffusion model for social networks. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming . 2005, 1127-1138
doi: 10.1007/11523468_91
85 Kempe D, Kleinberg J, Tardos V. Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2003, 137-146
doi: 10.1145/956750.956769
86 Easley D, Kleinberg J. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. New York: Cambridge University Press, 2010
doi: 10.1017/CBO9780511761942
87 Goldenberg J, Libai B, Muller E. Using complex systems analysis to advance marketing theory development. Academy of Marketing Science Review , 2001, 2001(9): 1-19
88 Lotker Z, Patt-Shamir B, Tuttle M R. Publish and perish: definition and analysis of an n-person publication impact game. In: Proceedings of the 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures . 2006, 11-18
89 Dubey P, Garg R, De Meyer B. Competing for customers in a social network: the quasi-linear case. In: Proceedings of the 2nd International Workshop on Internet and Network Economics . 2006, 162-173
90 Wang F Y, Carley K M, Zeng D, Mao W. Social computing: from social informatics to social intelligence. IEEE Intelligent Systems , 2007, 22(2): 79-83
doi: 10.1109/MIS.2007.41
91 Wang F Y. Toward a paradigm shift in social computing: the ACP approach. IEEE Intelligent Systems , 2007, 22(5): 65-67
doi: 10.1109/MIS.2007.4338496
92 Wang F Y. Computational experiments for behavior analysis and decision evaluation in complex systems. Journal of System Simulation , 2004, 16(5): 893-897
93 Zheng X, Ke G, Zeng D, Ram S, Lu H. Next-generation team-science platform for scientific collaboration. IEEE Intelligent Systems , 2011, 26(6): 72-76
doi: 10.1109/MIS.2011.104
[1] Gang WU, Zhiyong CHEN, Jia LIU, Donghong HAN, Baiyou QIAO. Task assignment for social-oriented crowdsourcing[J]. Front. Comput. Sci., 2021, 15(2): 152316-.
[2] Ildar NURGALIEV, Qiang QU, Seyed Mojtaba Hosseini BAMAKAN, Muhammad MUZAMMAL. Matching user identities across social networks with limited profile data[J]. Front. Comput. Sci., 2020, 14(6): 146809-.
[3] Kai LI, Guangyi LV, Zhefeng WANG, Qi LIU, Enhong CHEN, Lisheng QIAO. Understanding the mechanism of social tie in the propagation process of social network with communication channel[J]. Front. Comput. Sci., 2019, 13(6): 1296-1308.
[4] Zhongqing WANG, Shoushan LI, Guodong ZHOU. Personal summarization from profile networks[J]. Front. Comput. Sci., 2017, 11(6): 1085-1097.
[5] Yuan SU,Xi ZHANG,Lixin LIU,Shouyou SONG,Binxing FANG. Understanding information interactions in diffusion: an evolutionary game-theoretic perspective[J]. Front. Comput. Sci., 2016, 10(3): 518-531.
[6] Rong-Hua LI, Jianquan LIU, Jeffrey Xu YU, Hanxiong CHEN, Hiroyuki KITAGAWA. Co-occurrence prediction in a large location-based social network[J]. Front Comput Sci, 2013, 7(2): 185-194.
[7] Guojun WANG, Jie WU. FlowTrust: trust inference with network flows[J]. Front Comput Sci Chin, 2011, 5(2): 181-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed