Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    2012, Vol. 6 Issue (5) : 537-546    https://doi.org/10.1007/s11704-012-1296-7
RESEARCH ARTICLE
Automatic object classification using motion blob based local feature fusion for traffic scene surveillance
Zhaoxiang ZHANG(), Yunhong WANG
School of Computer Science and Engineering, Beihang University, Beijing 100191, China
 Download: PDF(667 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Automatic object classification in traffic scene videos is an important issue for intelligent visual surveillance with great potential for all kinds of security applications. However, this problem is very challenging for the following reasons. Firstly, regions of interest in videos are of low resolution and limited size due to the capacity of conventional surveillance cameras. Secondly, the intra-class variations are very large due to changes of view angles, lighting conditions, and environments. Thirdly, real-time performance of algorithms is always required for real applications. In this paper, we evaluate the performance of local feature descriptors for automatic object classification in traffic scenes. Image intensity or gradient information is directly used to construct effective feature vectors from regions of interest extracted via motion detection. This strategy has great advantages of efficiency compared to various complicated texture features. We not only analyze and evaluate the performance of different feature descriptors, but also fuse different scales and features to achieve better performance. Numerous experiments are conducted and experimental results demonstrate the efficiency and effectiveness of this strategy with robustness to noise, variance of view angles, lighting conditions, and environments.

Keywords visual surveillance      object classification      motion detection      feature fusion     
Corresponding Author(s): ZHANG Zhaoxiang,Email:zxzhang@buaa.edu.cn   
Issue Date: 01 October 2012
 Cite this article:   
Zhaoxiang ZHANG,Yunhong WANG. Automatic object classification using motion blob based local feature fusion for traffic scene surveillance[J]. Front Comput Sci, 2012, 6(5): 537-546.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-012-1296-7
https://academic.hep.com.cn/fcs/EN/Y2012/V6/I5/537
1 Brown L. View independent vehicle/person classification. In: Proceedings of the ACM 2nd International Workshop on Video Surveillance & Sensor Networks . 2004, 114-123
2 Rivlin E, Rudzsky M, Goldenberg R, Bogomolov U, Lepchev S. A realtime system for classification of moving objects. In: Proceedings of the 16th International Conference on Pattern Recognition . 2002, 688-691
3 Grimson W, Stauffer C, Romano R, Lee L. Using adaptive tracking to classify and monitor activities in a site. In: Proceedings of the 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 1998, 22-29
4 Zhou Q, Aggarwal J. Tracking and classifying moving objects from video. In: Proceedings of IEEE Workshop on Performance Evaluation of Tracking and Surveillance . 2001
5 Zhang Z, Cai Y, Huang K, Tan T. Real-time moving object classification with automatic scene division. In: Proceedings of the 2007 IEEE International Conference on Image Processing, ICIP ’07 . 2007, 149-152
6 Tan T, Sullivan G, Baker K. Model-based localisation and recognition of road vehicles. International Journal of Computer Vision , 1998, 27(1): 5-25
doi: 10.1023/A:1007924428535
7 Zhang Z, Dong W, Huang K, Tan T. Eda approach for model based localization and recognition of vehicles. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition . 2007, 1-8
doi: 10.1109/CVPR.2007.383507
8 Yan P, Khan S, Shah M. 3D model based object class detection in an arbitrary view. In: Proceedings of the IEEE 11th International Conference on Computer Vision, ICCV ’07 . 2007, 1-6
9 Everingham M, Gool L, Williams C, Winn J, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision , 2010, 88(2): 303-338
doi: 10.1007/s11263-009-0275-4
10 Han F, Shan Y, Cekander R, Sawhney H, Kumar R. A two-stage approach to people and vehicle detection with hog-based svm. In: Proceedings of Performance Metrics for Intelligent Systems Workshop in Conjunction with the IEEE Safety, Security, and Rescue Robotics Conference . 2006
11 Viola P, Jones M, Snow D. Detecting pedestrians using patterns of motion and appearance. In: Proceedings of the 9th IEEE International Conference on Computer Vision . 2003, 734-741
doi: 10.1109/ICCV.2003.1238422
12 Bicego M, Castellani U, Murino V. A hidden markov model approach for appearance-based 3D object recognition. Pattern Recognition Letters , 2005, 26(16): 2588-2599
doi: 10.1016/j.patrec.2005.06.005
13 Zitova B, Flusser J. Image registration methods: a survey. Image and Vision Computing , 2003, 21(11): 977-1000
doi: 10.1016/S0262-8856(03)00137-9
14 Lowe D. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision , 2004, 60(2): 91-110
doi: 10.1023/B:VISI.0000029664.99615.94
15 Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2002, 24(4): 509-522
doi: 10.1109/34.993558
16 Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2005, 27(10): 1615-1630
doi: 10.1109/TPAMI.2005.188
17 Gehler P, Nowozin S. On feature combination for multiclass object classification. In: Proccedings of the IEEE 12th International Conference on Computer Vision . 2009, 221-228
18 Munoz D, Bagnell J, Vandapel N, Hebert M. Contextual classification with functional max-margin markov networks. In: Proccedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’09 . 2009, 975-982
19 Grzegorzek M, Sav S, O’Connor N, Izquierdo E. Local wavelet features for statistical object classification and localization. IEEE Transactions on Multimedia , 2010, 17(1): 118
doi: 10.1109/MMUL.2010.16
20 Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2002, 24(7): 971-987
doi: 10.1109/TPAMI.2002.1017623
21 Lazebnik S, Schmid C, Ponce J. A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2005, 27(8): 1265-1278
doi: 10.1109/TPAMI.2005.151
22 Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery , 1998, 2(2): 121-167
doi: 10.1023/A:1009715923555
23 Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting. Institute of Mathematical Statistics , 2000, 28(2): 337-407
24 Zhang Z, Li M, Huang K, Tan T. Boosting local feature descriptors for automatic objects classification in traffic scene surveillance. In: Proccedings of the 19th International Conference on Pattern Recognition , ICPR ’08 . 2008, 1-4
25 Stauffer C, Grimson W. Adaptive background mixture models for realtime tracking. In: Proccedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR’ 99 . 1999
26 Liu Z, Huang K, Tan T, Wang L. Cast shadow removal with GMM for surface reflectance component. In: Proccedings of the 18th International Conference on Pattern Recognition, ICPR ’06 . 2006, 727-730
[1] Lele CAO,Fuchun SUN,Hongbo LI,Wenbing HUANG. Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine[J]. Front. Comput. Sci., 2017, 11(2): 276-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed