Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2017, Vol. 11 Issue (2) : 276-289    https://doi.org/10.1007/s11704-016-5171-9
RESEARCH ARTICLE
Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine
Lele CAO1,2,3(),Fuchun SUN1,2,Hongbo LI1,2,Wenbing HUANG1,2
1. State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
3. Department of Computing and Information Systems, The University of Melbourne, Parkville 3010 VIC, Australia
 Download: PDF(894 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine learning algorithms performing efficient sensory feature fusion have become a hot topic in robot recognition domain. This paper proposes an online multi-kernel extreme learning machine (OM-ELM) which assembles multiple ELM classifiers and optimizes the kernel weights with a p-norm formulation of multi-kernel learning (MKL) problem. It can be applied in feature fusion applications that require incremental learning over multiple sequential sensory readings. The performance of OM-ELM is tested towards four different robot recognition tasks. By comparing to several state-of-the-art online models for multi-kernel learning, we claim that our method achieves a superior or equivalent training accuracy and generalization ability with less training time. Practical suggestions are also given to aid effective online fusion of robot sensory features.

Keywords multi-kernel learning      online learning      extreme learning machine      feature fusion      robot recognition     
Corresponding Author(s): Lele CAO   
Just Accepted Date: 17 November 2015   Online First Date: 18 July 2016    Issue Date: 06 April 2017
 Cite this article:   
Lele CAO,Fuchun SUN,Hongbo LI, et al. Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine[J]. Front. Comput. Sci., 2017, 11(2): 276-289.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-5171-9
https://academic.hep.com.cn/fcs/EN/Y2017/V11/I2/276
1 Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B. Large scale multiple kernel learning. The Journal of Machine Learning Research, 2006, 7: 1531–1565
2 Lanckriet G R, Cristianini N, Bartlett P, Ghaoui L E, Jordan M I. Learning the kernel matrix with semidefinite programming. The Journal of Machine Learning Research, 2004, 5: 27–72
3 Zien A, Ong C S. Multiclass multiple kernel learning. In: Proceedings of International Conference on Machine Learning. 2007, 1191–1198
https://doi.org/10.1145/1273496.1273646
4 Rakotomamonjy A, Bach F, Canu S, Grandvalet Y. Simplemkl. Journal of Machine Learning Research, 2008, 9: 2491–2521
5 Shalev-Shwartz S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 2011, 4(2): 107–194
https://doi.org/10.1561/2200000018
6 Cesa-Bianchi N, Lugosi G. Prediction, Learning, and Games. Cambridge: Cambridge University Press, 2006
https://doi.org/10.1017/CBO9780511546921
7 Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications. Neurocomputing, 2006, 70(1): 489–501
https://doi.org/10.1016/j.neucom.2005.12.126
8 Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 2006, 17(4): 879–892
https://doi.org/10.1109/TNN.2006.875977
9 Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
10 Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2005, 886–893
https://doi.org/10.1109/cvpr.2005.177
11 Van De Weijer J, Schmid C. Coloring local feature extraction. In: Proceedings of European Conference on Computer Vision. 2006, 334–348
https://doi.org/10.1007/11744047_26
12 Wang H, Ullah M M, Klaser A, Laptev I, Schmid C. Evaluation of local spatio-temporal features for action recognition. In: Proceedings of British Machine Vision Conference. 2009, 1–11
https://doi.org/10.5244/c.23.124
13 Taylor G W, Fergus R, LeCun Y, Bregler C. Convolutional learning of spatio-temporal features. In: Proceedings of European Conference on Computer Vision. 2010, 140–153
https://doi.org/10.1007/978-3-642-15567-3_11
14 Li Z, Liu J, Yang Y, Zhou X, Lu H. Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(9): 2138–2150
https://doi.org/10.1109/TKDE.2013.65
15 Li Z, Liu J, Tang J, Lu H. Robust structured subspace learning for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 2085–2098
https://doi.org/10.1109/TPAMI.2015.2400461
16 Kokar M M, Tomasik J A, Weyman J. Formalizing classes of information fusion systems. Information Fusion, 2004, 5(3): 189–202
https://doi.org/10.1016/j.inffus.2003.11.001
17 Khaleghi B, Khamis A, Karray F O, Razavi S N. Multisensor data fusion: a review of the state-of-the-art. Information Fusion, 2011, 14(1): 28–44
https://doi.org/10.1016/j.inffus.2011.08.001
18 Waske B, Benediktsson J A. Fusion of support vector machines for classification of multisensor data. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 3858–3866
https://doi.org/10.1109/TGRS.2007.898446
19 Reiter A, Allen P K, Zhao T. Learning features on robotic surgical tools. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2012, 38–43
https://doi.org/10.1109/cvprw.2012.6239245
20 Campos F M, Correia L, Calado J. Robot visual localization through local feature fusion: an evaluation of multiple classifiers combination approaches. Journal of Intelligent and Robotic Systems, 2015, 77(2): 377–390
https://doi.org/10.1007/s10846-013-0016-3
21 Jie L, Orabona F, Fornoni M, Caputo B, Cesa-Bianchi N. OM-2: an online multi-class multi-kernel learning algorithm. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 43–50
22 Gijsberts A, Metta G. Incremental learning of robot dynamics using random features. In: Proceedings of IEEE International Conference on Robotics and Automation. 2011, 951–956
https://doi.org/10.1109/icra.2011.5980191
23 Nguyen-Tuong D, Peters J. Incremental online sparsification for model learning in real-time robot control. Neurocomputing, 2011, 74(11): 1859–1867
https://doi.org/10.1016/j.neucom.2010.06.033
24 Cho S, Jo S. Incremental online learning of robot behaviors from selected multiple kinesthetic teaching trials. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(3): 730–740
https://doi.org/10.1109/TSMCA.2012.2207108
25 Jamone L, Natale L, Nori F, Metta G, Sandini G. Autonomous online learning of reaching behavior in a humanoid robot. International Journal of Humanoid Robotics, 2012, 9(10): 6–8
https://doi.org/10.1142/s021984361250017x
26 Luo J, Pronobis A, Caputo B, Jensfelt P. Incremental learning for place recognition in dynamic environments. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2007, 721–728
https://doi.org/10.1109/iros.2007.4398986
27 Ciliberto C, Smeraldi F, Natale L, Metta G. Online multiple instance learning applied to hand detection in a humanoid robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2011, 1526–1532
https://doi.org/10.1109/iros.2011.6095002
28 Araki T, Nakamura T, Nagai T, Funakoshi K, Nakano M, Iwahashi N. Online object categorization using multimodal information autonomously acquired by robots. Advanced Robotics, 2012, 26(17): 1995–2020
https://doi.org/10.1080/01691864.2012.728693
29 Su L j, Yao M. Extreme learning machine with multiple kernels. In: Proceedings of IEEE International Conference on Control and Automation. 2013, 424–429
30 Liu X, Wang L, Huang G B, Zhang J, Yin J. Multiple kernel extreme learning machine. Neurocomputing, 2015, 149: 253–264
https://doi.org/10.1016/j.neucom.2013.09.072
31 Cao L L, Huang W B, Sun F C. Optimization-based extreme learning machine with multi-kernel learning approach for classification. In: Proceedings of International Conference on Pattern Recognition. 2014, 3564–3569
https://doi.org/10.1109/icpr.2014.613
32 Liang N Y, Huang G B, Saratchandran P, Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transaction on Neural Networks, 2006, 17(6): 1411–1423
https://doi.org/10.1109/TNN.2006.880583
33 Hoang M T T, Huynh H T, Vo N H, Won Y. A robust online sequential extreme learning machine. Lecture Notes in Computer Science, 2007, 4491: 1077–1086
https://doi.org/10.1007/978-3-540-72383-7_126
34 Lan Y, Soh Y C, Huang G B. Ensemble of online sequential extreme learning machine. Neurocomputing, 2009, 72(13): 3391–3395
https://doi.org/10.1016/j.neucom.2009.02.013
35 Hush D, Kelly P, Scovel C, Steinwart I. QP algorithms with guaranteed accuracy and run time for support vector machines. The Journal of Machine Learning Research, 2006, 7: 733–769
36 Jie L, Orabona F, Caputo B. An online framework for learning novel concepts over multiple cues. In: Proceedings of Asian Conference on Computer Vision. 2010, 269–280
https://doi.org/10.1007/978-3-642-12307-8_25
37 Hoi S C, Jin R, Zhao P, Yang T. Online multiple kernel classification. Machine Learning, 2013, 90(2): 289–316
https://doi.org/10.1007/s10994-012-5319-2
38 Huang G B, Ding X, Zhou H. Optimization-based extreme learning machine for classification. Neurocomputing, 2010, 74(1): 155–163
https://doi.org/10.1016/j.neucom.2010.02.019
39 Huang G B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics: Cybernetics, 2012, 42(2): 513–529
40 Huang G B. What are extreme learning machines? filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cognitive Computation, 2015, 7(3): 263–278
https://doi.org/10.1007/s12559-015-9333-0
41 Orabona F, Jie L, Caputo B. Multi kernel learning with online-batch optimization. The Journal of Machine Learning Research, 2012, 13(1): 227–253
42 Orabona F, Jie L, Caputo B. Online-batch strongly convex multi kernel learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 787–794
https://doi.org/10.1109/cvpr.2010.5540137
43 Fink M, Shalev-Shwartz S, Singer Y, Ullman S. Online multiclass learning by interclass hypothesis sharing. In: Proceedings of International Conference on Machine Learning. 2006, 313–320
https://doi.org/10.1145/1143844.1143884
44 Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107–122
https://doi.org/10.1007/s13042-011-0019-y
45 Bach F R, Lanckriet G R, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of International Conference on Machine Learning. 2004, 6
https://doi.org/10.1145/1015330.1015424
46 Jin R, Hoi S C, Yang T. Online multiple kernel learning: algorithms and mistake bounds. Lecture Notes in Computer Science, 2010, 6331(4): 390–404
https://doi.org/10.1007/978-3-642-16108-7_31
47 Xiao W, Sun F C, Liu H P, He C. Dexterous robotic-hand grasp learning using piecewise linear dynamic systems model. In: Proceedings of International Conference on Cognitive Systems and Information Processing. 2014, 845–855
https://doi.org/10.1007/978-3-642-37835-5_73
48 Xiao W, Sun F C, Liu H P, Huang C. Manipulation techniques of dexterous robotic hand based on cyber-physical fusion. Journal of Tsinghua University (Science and Technology), 2013, 11: 1601–1608
49 Bekiroglu Y, Kragic D, Kyrki V. Learning grasp stability based on tactile data and hmms. In: Proceedings of IEEE International Symposium on Robot and Human Interactive Communication. 2010, 132–137
https://doi.org/10.1109/ROMAN.2010.5598659
50 Bekiroglu Y, Laaksonen J, Jorgensen J A, Kyrki V, Kragic D. Assessing grasp stability based on learning and haptic data. IEEE Transactions on Robotics, 2011, 27(3): 616–629
https://doi.org/10.1109/TRO.2011.2132870
51 Yang J, Liu H, Sun F, Gao M. Tactile sequence classification using joint kernel sparse coding. In: Proceedings of International Joint Conference on Neural Networks. 2015, 1–6
https://doi.org/10.1109/ijcnn.2015.7280512
52 Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2006, 2169–2178
https://doi.org/10.1109/cvpr.2006.68
53 Madry M, Bo L, Kragic D, Fox D. ST-HMP: Unsupervised spatiotemporal feature learning for tactile data. In: Proceedings of IEEE International Conference on Robotics and Automation. 2014, 2262–2269
54 Orabona F. DOGMA: a Matlab toolbox for online learning, 2009
55 Bo L, Ren X, Fox D. Hierarchical matching pursuit for image classification: architecture and fast algorithms. In: Proceedings of Conference on Neural Information Processing Systems. 2011, 2115–2123
56 Hinton G. A practical guide to training restricted boltzmann machines. Momentum, 2010, 9(1): 926
[1]  Supplementary Material Download
[1] Hui ZHONG, Zaiyi CHEN, Chuan QIN, Zai HUANG, Vincent W. ZHENG, Tong XU, Enhong CHEN. Adam revisited: a weighted past gradients perspective[J]. Front. Comput. Sci., 2020, 14(5): 145309-.
[2] Jia ZHU, Xingcheng WU, Jing XIAO, Changqin HUANG, Yong TANG, Ke Deng. Improved expert selection model for forex trading[J]. Front. Comput. Sci., 2018, 12(3): 518-527.
[3] Zhaoxiang ZHANG, Yunhong WANG. Automatic object classification using motion blob based local feature fusion for traffic scene surveillance[J]. Front Comput Sci, 2012, 6(5): 537-546.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed