Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    0, Vol. Issue () : 34-43    https://doi.org/10.1007/s11704-012-2084-0
RESEARCH ARTICLE
Design and verification of a lightweight reliable virtual machine monitor for a many-core architecture
Yuehua DAI, Yi SHI(), Yong QI, Jianbao REN, Peijian WANG
School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(398 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Virtual machine monitors (VMMs) play a central role in cloud computing. Their reliability and availability are critical for cloud computing. Virtualization and device emulation make the VMM code base large and the interface between OS and VMM complex. This results in a code base that is very hard to verify the security of the VMM. For example, a misuse of a VMM hyper-call by a malicious guest OS can corrupt the whole VMM. The complexity of the VMM also makes it hard to formally verify the correctness of the system’s behavior. In this paper a new VMM, operating system virtualization (OSV), is proposed. The multiprocessor boot interface and memory configuration interface are virtualized in OSV at boot time in the Linux kernel. After booting, only inter-processor interrupt operations are intercepted by OSV, which makes the interface between OSV and OS simple. The interface is verified using formal model checking, which ensures a malicious OS cannot attack OSV through the interface. Currently, OSV is implemented based on the AMD Opteron multi-core server architecture. Evaluation results show that Linux running on OSV has a similar performance to native Linux. OSV has a performance improvement of 4%-13% over Xen.

Keywords virtual machine monitor      model      operating system      many core      formal verification     
Corresponding Author(s): SHI Yi,Email:shiyi@mail.xjtu.edu.cn   
Issue Date: 01 February 2013
 Cite this article:   
Yuehua DAI,Yi SHI,Yong QI, et al. Design and verification of a lightweight reliable virtual machine monitor for a many-core architecture[J]. Front Comput Sci, 0, (): 34-43.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-012-2084-0
https://academic.hep.com.cn/fcs/EN/Y0/V/I/34
1 Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I,Warfield A. Xen and the art of virtualization. In: Proceedings of the 19th ACM Symposium on Operating Systems Principles . 2003, 164-177
2 Understanding Memory Resource Management in VMware ESX Server. VMWare white paper . www.vmware.com/files/pdf/perfvsphere- memory_management.pdf
3 Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P, Elkaduwe D, Engelhardt K, Kolanski R, Norrish M, Sewell T, Tuch H, Winwood S. seL4: formal verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles . 2009, 207-220
doi: 10.1145/1629575.1629596
4 Holzmann G J. The logic of bugs. In: Proceedings of Foundations of Software Engineering . 2002
5 Gens F. IT cloud services user survey, part . 2: top benefits & challenges. http://blogs.idc.com/ie/?p=210
6 Boyd-Wickizer S, Chen H, Chen R, Mao Y, Kaashoek F, Morris R, Pesterev A, Stein L, Wu M, Dai Y. Corey: an operating system for many cores. In: Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation . 2008, 43-57
7 Engler D, Kaashoek M. Exokernel: an operating system architecture for application-level resource management. ACM SIGOPS Operating Systems Review , 1995, 29(5): 251-266
doi: 10.1145/224057.224076
8 Baumann A, Barham P, Dagand P, Harris T, Isaacs R, Peter S, Roscoe T, Schupbach A, Singhania A. The multikernel: a new OS architecture for scalable multicore systems. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles . 2009, 29-44
doi: 10.1145/1629575.1629579
9 Seshadri A, Luk M, Qu N, Perrig A. SecVisor: a tiny hypervisor to provide lifetime kernel code integrity for commodity OSes. ACM SIGOPS Operating Systems Review , 2007, 41(6): 335-350
doi: 10.1145/1323293.1294294
10 McCune J M, Li Y, Qu N, Zhou Z, Datta A, Gligor V, Perrig A. TrustVisor: efficient TCB reduction and attestation. IEEE Symposium on Security and Privacy . 2010, 143-158
11 Keller E, Szefer J, Rexford J, Lee R B. NoHype: virtualized cloud infrastructure without the virtualization. ACM SIGARCH Computer Architecture News , 2010, 38(3): 350-361
doi: 10.1145/1816038.1816010
12 Shinagawa T, Eiraku H, Tanimoto K, Omote K, Hasegawa S, Horie T, Hirano M, Kourai K, Oyama Y, Kawai E. BitVisor: a thin hypervi sor for enforcing i/o device security. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments . 2009, 121-130
doi: 10.1145/1508293.1508311
13 Zhang F, Chen J, Chen H, Zang B. CloudVisor: retrofitting protection of virtual machines in multi-tenant cloud with nested virtualization. In: Proceedings of the 23rd ACM Symposium on Operating Systems Principles . 2011, 203-216
14 Steinberg U, Kauer B. NOVA: a microhypervisor-based secure virtualization architecture. In: Proceedings of the 5th European Conference on Computer Systems . 2010, 209-222
15 Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P, Elkaduwe D, Engelhardt K, Kolanski R, Norrish M. seL4: formal verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles . 2009, 207-220
doi: 10.1145/1629575.1629596
16 Franklin J, Seshadri A, Qu N, Chaki S, Datta A. Attacking, repairing, and verifying SecVisor: a retrospective on the security of a hypervisor. Technical Report CMU-CyLab-08-008 . 2008
17 Wang Z, Jiang X. Hypersafe: a lightweight approach to provide lifetime hypervisor control-flow integrity. IEEE Symposium on Security and Privacy (SP) . 2010, 380-395
18 Ravi V, Becchi M, Agrawal G, Chakradhar S. Supporting GPU sharing in cloud environments with a transparent runtime consolidation framework. In: Proceedings of the International Symposium on High- Performance Parallel and Distributed Computting . 2011
19 AMD. Amd64 architecture programmers manual volume 2: system programming. 2007
20 Holzmann G J. The model checker SPIN. IEEE Transactions on Software Engineering , 1997, 23(5): 279-295
doi: 10.1109/32.588521
21 McVoy L, Staelin C. Lmbench: portable tools for performance analysis. In: Proceedings of the 1996 Annual Conference on USENIX Annual Technical Conference . 1996, 23
22 Kortchinsky K. Hacking 3D (and breaking out of VMWare). In: Proceedings of Black Hat conference . 2009
23 Wojtczuk R, Rutkowska J. Xen Owning trilogy. In: Proceedings of Black Hat conference . 2008
24 Secunia. Xen multiple vulnerability report. http://secunia.com/ advisories/44502/
25 Ren J, Qi Y, Dai Y, Xuan Y. Inter-domain communication mechanism design and implementation for high performance. In: Proceedings of the 4th International Symposium on Parallel Architectures, Algorithms and programming (PAAP) . 2011, 272-276
[1] Liangxuan ZHU, Han LI, Xuelin ZHANG, Lingjuan WU, Hong CHEN. Neural partially linear additive model[J]. Front. Comput. Sci., 2024, 18(6): 186334-.
[2] Jiacheng LI, Ruize HAN, Wei FENG, Haomin YAN, Song WANG. Contactless interaction recognition and interactor detection in multi-person scenes[J]. Front. Comput. Sci., 2024, 18(5): 185325-.
[3] Yitao LIU, Chenxin AN, Xipeng QIU. Y-Tuning: an efficient tuning paradigm for large-scale pre-trained models via label representation learning[J]. Front. Comput. Sci., 2024, 18(4): 184320-.
[4] Yuting YANG, Pei HUANG, Juan CAO, Jintao LI, Yun LIN, Feifei MA. A prompt-based approach to adversarial example generation and robustness enhancement[J]. Front. Comput. Sci., 2024, 18(4): 184318-.
[5] Ziwang FU, Feng LIU, Qing XU, Xiangling FU, Jiayin QI. LMR-CBT: learning modality-fused representations with CB-Transformer for multimodal emotion recognition from unaligned multimodal sequences[J]. Front. Comput. Sci., 2024, 18(4): 184314-.
[6] Lei LI, Chengyu WANG, Minghui QIU, Cen CHEN, Ming GAO, Aoying ZHOU. Accelerating BERT inference with GPU-efficient exit prediction[J]. Front. Comput. Sci., 2024, 18(3): 183308-.
[7] Hengyu LIU, Tiancheng ZHANG, Fan LI, Minghe YU, Ge YU. A probabilistic generative model for tracking multi-knowledge concept mastery probability[J]. Front. Comput. Sci., 2024, 18(3): 183602-.
[8] Wenzheng BAO, Bin YANG. Protein acetylation sites with complex-valued polynomial model[J]. Front. Comput. Sci., 2024, 18(3): 183904-.
[9] Mingzhi YUAN, Kexue FU, Zhihao LI, Manning WANG. Decoupled deep hough voting for point cloud registration[J]. Front. Comput. Sci., 2024, 18(2): 182703-.
[10] Dawei ZHANG, Peng WANG, Yongfeng DONG, Linhao LI, Xin LI. Joint fuzzy background and adaptive foreground model for moving target detection[J]. Front. Comput. Sci., 2024, 18(2): 182306-.
[11] Shiyuan LIU, Yunchun LI, Hailong YANG, Ming DUN, Chen CHEN, Huaitao ZHANG, Wei LI. QAAS: quick accurate auto-scaling for streaming processing[J]. Front. Comput. Sci., 2024, 18(1): 181201-.
[12] Muning WEN, Runji LIN, Hanjing WANG, Yaodong YANG, Ying WEN, Luo MAI, Jun WANG, Haifeng ZHANG, Weinan ZHANG. Large sequence models for sequential decision-making: a survey[J]. Front. Comput. Sci., 2023, 17(6): 176349-.
[13] Huisi ZHOU, Dantong OUYANG, Xinliang TIAN, Liming ZHANG. DiagDO: an efficient model based diagnosis approach with multiple observations[J]. Front. Comput. Sci., 2023, 17(6): 176407-.
[14] Long LI, Jianbo HUANG, Liang CHANG, Jian WENG, Jia CHEN, Jingjing LI. DPPS: A novel dual privacy-preserving scheme for enhancing query privacy in continuous location-based services[J]. Front. Comput. Sci., 2023, 17(5): 175814-.
[15] Zhanheng CHEN, Zhuhong YOU, Qinhu ZHANG, Zhenhao GUO, Siguo WANG, Yanbin WANG. In silico prediction methods of self-interacting proteins: an empirical and academic survey[J]. Front. Comput. Sci., 2023, 17(3): 173901-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed