Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2014, Vol. 8 Issue (1) : 145-155    https://doi.org/10.1007/s11704-013-2213-4
RESEARCH ARTICLE
SWVFS: a saliency weighted visual feature similarity metric for image quality assessment
Li CUI()
School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China
 Download: PDF(677 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a saliency weighted visual feature similarity (SWVFS) metric is proposed for full reference image quality assessment (IQA). Instead of traditional spatial pooling strategies, a visual saliency-based approach is employed for better compliance with properties of the human visual system, where the saliency allocation is closely related to the activity of posterior parietal cortex and the pluvial nuclei of the thalamus. Assuming that the saliency map actually represents the contribution of locally computed visual distortions to the overall image quality, the gradient similarity and the textural congruency are merged into the final image quality indicator. The gradient and texture comparison play complementary roles in characterizing the local image distortion. Extensive experiments conducted on seven publicly available image databases show that the performance of SWVFS is competitive with the state-of-the-art IQA algorithms.

Keywords image quality assessment      gradient      texture      visual saliency     
Corresponding Author(s): Li CUI   
Issue Date: 01 February 2014
 Cite this article:   
Li CUI. SWVFS: a saliency weighted visual feature similarity metric for image quality assessment[J]. Front. Comput. Sci., 2014, 8(1): 145-155.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-2213-4
https://academic.hep.com.cn/fcs/EN/Y2014/V8/I1/145
1 Z Wang, A C Bovik. Modern image quality assessment. Synthesis Lectures on Image, Video, and Multimedia Processing, 2006, 2(1): 1−156
https://doi.org/10.2200/S00010ED1V01Y200508IVM003
2 S Farnand, F Gaykema. Special section guest editorial: image quality assessment. Journal of Electronic Imaging, 2010, 19(1): 1−2
3 W Lin, C C Jay Kuo. Perceptual visual quality metrics: a survey. Journal of Visual Communication and Image Representation, 2011, 22(4): 297−312
https://doi.org/10.1016/j.jvcir.2011.01.005
4 N Damera-Venkata, T D Kite, W S Geisler, B L Evans, A C Bovik. Image quality assessment based on a degradation model. IEEE Transactions on Image Processing, 2000, 9(4): 636−650
https://doi.org/10.1109/83.841940
5 D M Chandler, S S Hemami. VSNR: A wavelet-based visual signal-tonoise ratio for natural images. IEEE Transactions on Image Processing, 2007, 16(9): 2284−2298
https://doi.org/10.1109/TIP.2007.901820
6 H R Sheikh, A C Bovik, G De Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 2005, 14(12): 2117−2128
https://doi.org/10.1109/TIP.2005.859389
7 H R Sheikh, A C Bovik. Image information and visual quality. IEEE Transactions on Image Processing, 2006, 15(2): 430−444
https://doi.org/10.1109/TIP.2005.859378
8 A Liu, W Lin, M Narwaria. Image quality assessment based on gradient similarity. IEEE Transactions on Image Processing, 2012, 21(4): 1500−1512
https://doi.org/10.1109/TIP.2011.2175935
9 L Zhang, L Zhang, X Mou, D Zhang. FSIM: a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 2011, 20(8): 2378−2386
https://doi.org/10.1109/TIP.2011.2109730
10 Z Wang, A C Bovik, H R Sheikh, E P Simoncelli. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600−612
https://doi.org/10.1109/TIP.2003.819861
11 Z Wang, A C Bovik, H R Sheikh, E P Simoncelli. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600−612
https://doi.org/10.1109/TIP.2003.819861
12 C Li, A C Bovik. Content-partitioned structural similarity index for image quality assessment. Signal Processing: Image Communication, 2010, 25(7): 517−526
https://doi.org/10.1016/j.image.2010.03.004
13 Z Wang, Q Li. Information content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing, 2011, 20(5): 1185−1198
https://doi.org/10.1109/TIP.2010.2092435
14 L Cui, A R Allen. An image quality metric based on corner, edge and symmetry maps. In: Proceedings of the 2008 British Machine Vision Conference. 2008, 1−10
15 L Itti, C Koch, E Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254−1259
https://doi.org/10.1109/34.730558
16 H Liu, I Heynderickx. Visual attention in objective image quality assessment: based on eye-tracking data. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(7): 971−982
https://doi.org/10.1109/TCSVT.2011.2133770
17 J You, A Perkis, M M Hannuksela, M Gabbouj. Perceptual quality assessment based on visual attention analysis. In: Proceedings of the 17th ACM International Conference on Multimedia. 2009, 561−564
18 Y Tong, H Konik, F A Cheikh, A Trémeau. Full reference image quality assessment based on saliency map analysis. Journal of Imaging Science and Technology, 2010, 54(3): 1−14
https://doi.org/10.2352/J.ImagingSci.Technol.2010.54.3.030503
19 K Gu, G Zhai, X Yang, L Chen, W Zhang. Nonlinear additive model based saliency map weighting strategy for image quality assessment. In: Proceedings of the IEEE 14th International Workshop on Multimedia Signal Processing. 2012, 313−318
20 L G Roberts. Machine perception of three-dimensional solids. Technical Report, DTIC Document, 1963
21 B S Manjunath, W Y Ma. Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837−842
https://doi.org/10.1109/34.531803
22 D Chandler, S Hemami. A57 database, 2007
23 A Ninassi, P Le Callet, F Autrusseau. Subjective quality assessment-IVC database
24 N Ponomarenko, V Lukin, A Zelensky, K Egiazarian, M Carli, F Battisti. TID2008-A database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 2009, 10(4): 30−45
25 Y Horita, K Shibata, Y Kawayoke, Z P Sazzad. Mict image quality evaluation database, 2011
26 H R Sheikh, Z Wang, A C Bovik, L Cormack. Image and video quality assessment research at live. , 2003
27 E Larson, D Chandler. Categorical image quality (CSIQ) database. 2010
28 U Engelke, T Kusuma, H Zepernick. Wireless imaging quality (WIQ) database. 2010
29 ITU-R Recommendation BT.500-13. Technical report, International Telecommunication Union, Geneva, Switzerland, 2002
30 Subjective video quality assessment methods for multimedia applications. Technical Report, ITU-T recommendation P.910, 1999
31 S Tourancheau, P Le Callet, D Barba. Image and video quality assessment using lCD: comparisons with CRT conditions. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2008, 91(6): 1383−1391
https://doi.org/10.1093/ietfec/e91-a.6.1383
32 Subjective assessment of standard definition digital television (SDTV) systems. Technical Report, ITU-R recommendation BT.1129-2, 1998
[1] Yujin CHAI, Yanlin WENG, Lvdi WANG, Kun ZHOU. Speech-driven facial animation with spectral gathering and temporal attention[J]. Front. Comput. Sci., 2022, 16(3): 163703-.
[2] Ashok KUMAR, Arpit JAIN. Image smog restoration using oblique gradient profile prior and energy minimization[J]. Front. Comput. Sci., 2021, 15(6): 156706-.
[3] Omar AL-KADI,Osama AL-KADI,Rizik AL-SAYYED,Ja’far ALQATAWNA. Road scene analysis for determination of road traffic density[J]. Front. Comput. Sci., 2014, 8(4): 619-628.
[4] Lili WANG,Qinglin QI,Yi CHEN,Wei KE,Aimin HAO. Interactive texture design and synthesis from mesh sketches[J]. Front. Comput. Sci., 2014, 8(2): 330-341.
[5] Jingrui HE, Hanghang TONG, Jaime CARBONELL. An effective framework for characterizing rare categories[J]. Front Comput Sci, 2012, 6(2): 154-165.
[6] Tang Yuanyan. Status of pattern recognition with wavelet analysis[J]. Front. Comput. Sci., 2008, 2(3): 268-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed