Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2014, Vol. 8 Issue (5) : 828-836    https://doi.org/10.1007/s11704-014-3187-6
RESEARCH ARTICLE
Lattice-based certificateless encryption scheme
Mingming JIANG1,*(),Yupu HU1,Hao LEI2,Baocang WANG1,Qiqi LAI1
1. State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
2. Security and Privacy Lab, CRDU, Huawei Technologies Co., LTD., Beijing 100095, China
 Download: PDF(359 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Certificateless public key cryptography (CLPKC) can solve the problems of certificate management in a public key infrastructure (PKI) and of key escrows in identity-based public key cryptography (ID-PKC). In CL-PKC, the key generation center (KGC) does not know the private keys of all users, and their public keys need not be certificated by certification authority (CA). At present, however, most certificateless encryption schemes are based on large integer factorization and discrete logarithms that are not secure in a quantum environment and the computation complexity is high. To solve these problems, we propose a new certificateless encryption scheme based on lattices, more precisely, using the hardness of the learning with errors (LWE) problem. Compared with schemes based on large integer factorization and discrete logarithms, the most operations are matrix-vector multiplication and inner products in our scheme, our approach has lower computation complexity. Our scheme can be proven to be indistinguishability chosen ciphertext attacks (IND-CPA) secure in the random oracle model.

Keywords lattice-based cryptography      LWE      identitybased encryption (IBE)      post-quantum cryptography      certificateless encryption     
Corresponding Author(s): Mingming JIANG   
Issue Date: 11 October 2014
 Cite this article:   
Mingming JIANG,Yupu HU,Hao LEI, et al. Lattice-based certificateless encryption scheme[J]. Front. Comput. Sci., 2014, 8(5): 828-836.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-014-3187-6
https://academic.hep.com.cn/fcs/EN/Y2014/V8/I5/828
1 Al-Riyami S, Paterson K G. Certificateless public key cryptography. Lecture Notes in Computer Science, 2003, 2894: 452-473
https://doi.org/10.1007/978-3-540-40061-5_29
2 Al-Riyami S, Paterson K G. CBE from CL-PKE: a generic construction and efficient schemes. Lecture Notes in Computer Science, 2005, 3386: 398-415
https://doi.org/10.1007/978-3-540-30580-4_27
3 Baek J, Safavi-Naini R, Susilo W. Certificateless public key encryption without pairing. Lecture Notes in Computer Science, 2005, 3650: 134-148
https://doi.org/10.1007/11556992_10
4 Lai J Z, Deng R H, Liu S L, Kou W D. RSA-based certificateless public key encryption. Lecture Notes in Computer Science, 2009, 5451: 24-34
https://doi.org/10.1007/978-3-642-00843-6_3
5 Yum D H, Lee P J. Generic construction of certificateless encryption. Lecture Notes in Computer Science, 2004, 3043: 802-811
https://doi.org/10.1007/978-3-540-24707-4_93
6 Libert B, Quisquater J J. On constructing certificateless cryptosystems from identity based encryption. Lecture Notes in Computer Science, 2006, 3958: 474-490
https://doi.org/10.1007/11745853_31
7 Cheng Z H, Chen L Q, Ling L, Comley R. General and efficient certificateless public key encryption constructions. Lecture Notes in Computer Science, 2007, 4575: 83-107
https://doi.org/10.1007/978-3-540-73489-5_6
8 Dent A W, Libert B, Paerson K G. Certificateless encryption schemes strongly secure in the standard model. Lecture Notes in Computer Science, 2008, 4939: 344-359
https://doi.org/10.1007/978-3-540-78440-1_20
9 Huang Q, Wong D S. Generic certificateless encryption in the standard model. Lecture Notes in Computer Science, 2007, 4752: 278-291
https://doi.org/10.1007/978-3-540-75651-4_19
10 Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing. 2008, 197-206
11 Regev O. On lattices, learning with errors, random linear codes, and cryptography. Journal of ACM, 2009, 56(6): Article No. 34
https://doi.org/10.1145/1568318.1568324
12 Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors over rings. Journal of ACM, 2013, 60(6): Article No. 43
https://doi.org/10.1145/2535925
13 Lindner R, Peikert C. Better key sizes (and attacks) for LWE-based encryption. Lecture Notes in Computer Science, 2011, 6558: 319-339
https://doi.org/10.1007/978-3-642-19074-2_21
14 Stehlé D, Steinfeld R. Making NTRU as secure as worst-case problems over ideal lattices. Lecture Notes in Computer Science, 2011, 6632: 27-47
https://doi.org/10.1007/978-3-642-20465-4_4
15 Cash D, Hofheinz D, Kiltz E, Peikert C. Bonsai trees, or how to delegate a lattice basis. Lecture Notes in Computer Science, 2010, 6110: 523-552
https://doi.org/10.1007/978-3-642-13190-5_27
16 Agrawal S, Boneh D, Boyen X. Efficient lattice (H) IBE in the standard model. Lecture Notes in Computer Science, 2010, 6110: 553-572
https://doi.org/10.1007/978-3-642-13190-5_28
17 Agrawal S, Boneh D, Boyen X. Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. Lecture Notes in Computer Science, 2010, 6223: 98-115
https://doi.org/10.1007/978-3-642-14623-7_6
18 Guang Y, Gu C X, Zhu Y F, Zheng Y H, Fei J L. Certificateless fully homomorphic encryption based on LWE problem. Journal of Electronics and Information Technology, 2013, 35(4): 988-993
https://doi.org/10.3724/SP.J.1146.2012.01102
19 Gentry C. Fully homomorphic encryption using ideal lattices. In: Proceedings of STOC2009, 169-178
20 Gentry C. Toward basing fully homomorphic encryption on worst-case hardness. Lecture Notes in Computer Science, 2010, 6223: 116-137
https://doi.org/10.1007/978-3-642-14623-7_7
21 Brakerski Z, Vaikuntanathan V. Fully homomorphic encryption from ring-LWE and security for key dependent messages. Lecture Notes in Computer Science, 2011, 6841: 505-524
https://doi.org/10.1007/978-3-642-22792-9_29
22 Brakerski Z, Vaikuntanathan V. Efficient fully homomorphicencryption from (standard) LWE. In: Proceedings of 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science. 2011, 97-106
https://doi.org/10.1109/FOCS.2011.12
23 Zhang G Y. Fuzzy certificateless identity-based encryption protocol from lattice. Applied Mechanics and Materials, 2013, 380: 2262-2266
https://doi.org/10.4028/www.scientific.net/AMM.380-384.2262
24 Lyubashevsky V. Lattice signatures without trapdoors. Lecture Notes in Computer Science, 2012, 7237: 738-755
https://doi.org/10.1007/978-3-642-29011-4_43
25 Gordon D, Katz J, Vaikuntanathan V. A group signature scheme from lattice assumptions. Lecture Notes in Computer Science, 2010, 6477: 395-412
https://doi.org/10.1007/978-3-642-17373-8_23
26 Rückert M. Lattice-based blind signatures. Lecture Notes in Computer Science, 2010, 6477: 413-430
https://doi.org/10.1007/978-3-642-17373-8_24
27 Rückert M. Strongly unforgeable signatures and hierarchical identitybased signatures from lattices without random oracles. Lecture Notes in Computer Science, 2010, 6061: 182-200
https://doi.org/10.1007/978-3-642-12929-2_14
28 Micciancio D, Regev O. Worst-case to average-case reductions based on gaussian measures. SIAM Journal on Computing, 2007, 37(1): 267-302
https://doi.org/10.1137/S0097539705447360
29 Alwen J, Peiker C. Generating shorter bases for hard random lattices. Lecture Notes in Computer Science, 2009, 75-86
30 Regev O. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM, 2009, 56(6): Article No.34
https://doi.org/10.1145/1568318.1568324
31 Peikert C. Public-key cryptosystems from the worst-case shortest vector problem. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing. 2009, 333-342
32 Boneh D, Freeman D. Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. Lecture Notes in Computer Science, 2011, 6571: 1-16
https://doi.org/10.1007/978-3-642-19379-8_1
[1] Momeng LIU, Yupu HU. Universally composable oblivious transfer from ideal lattice[J]. Front. Comput. Sci., 2019, 13(4): 879-906.
[2] Xiuhua LU,Qiaoyan WEN,Zhengping JIN,Licheng WANG,Chunli YANG. A lattice-based signcryption scheme without random oracles[J]. Front. Comput. Sci., 2014, 8(4): 667-675.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed