Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2014, Vol. 8 Issue (4) : 667-675    https://doi.org/10.1007/s11704-014-3163-1
RESEARCH ARTICLE
A lattice-based signcryption scheme without random oracles
Xiuhua LU1,2,*(),Qiaoyan WEN1,Zhengping JIN1,Licheng WANG3,Chunli YANG3
1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. Mathematics and Information Science, Langfang Teachers University, Langfang 065000, China
3. Information Security Center, Beijing University of Posts and Telecommunications, Beijing 100876, China
 Download: PDF(350 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In order to achieve secure signcryption schemes in the quantum era, Li Fagen et al. [Concurrency and Computation: Practice and Experience, 2012, 25(4): 2112–2122] and Wang Fenghe et al. [Applied Mathematics & Information Sciences, 2012, 6(1): 23–28] have independently extended the concept of signcryption to lattice-based cryptography. However, their schemes are only secure under the random oracle model. In this paper, we present a lattice-based signcryption scheme which is secure under the standard model. We prove that our scheme achieves indistinguishability against adaptive chosen-ciphertext attacks (IND-CCA2) under the learning with errors (LWE) assumption and existential unforgeability against adaptive chosen-message attacks (EUFCMA) under the small integer solution (SIS) assumption.

Keywords signcryption      standard model      lattice-based cryptography      learning with errors problem      small integer solution problem     
Corresponding Author(s): Xiuhua LU   
Issue Date: 11 August 2014
 Cite this article:   
Zhengping JIN,Xiuhua LU,Qiaoyan WEN, et al. A lattice-based signcryption scheme without random oracles[J]. Front. Comput. Sci., 2014, 8(4): 667-675.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-014-3163-1
https://academic.hep.com.cn/fcs/EN/Y2014/V8/I4/667
1 Zheng Y. Digital signcryption or how to achieve cost(signature & encryption) _cost(signature) + cost(encryption). Lecture Notes in Computer Science, 1997, 1294: 165-179
doi: 10.1007/BFb0052234
2 Boyen X. Multipurpose identity-based signcryption. Lecture Notes in Computer Science, 2003, 2729: 383-399
doi: 10.1007/978-3-540-45146-4_23
3 Malone-Lee J, Mao W. Two birds one stone: signcryption using RSA. In: Proceedings of the 2003 RSA Conference on the Cryptographers’ Track. 2003, 211-226
4 Barreto P, Libert B, McCullagh N, Quisquater J. Efficient and provablysecure identity-based signatures and signcryption from bilinear maps. Lecture Notes in Computer Science, 2005, 3788: 515-532
doi: 10.1007/11593447_28
5 Li F, Shirase M, Takagi T. Certificateless hybrid signcryption. Mathematical and Computer Modelling, 2013, 57(1): 324-343
doi: 10.1016/j.mcm.2012.06.011
6 Shor P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 1997, 26(5): 1484-1509
doi: 10.1137/S0097539795293172
7 Peikert C, Waters B. Lossy trapdoor functions and their applications. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing. 2008, 187-196
8 Peikert C. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing. 2009, 333-342
9 Micciancio D, Peikert C. Trapdoors for lattices: Simpler, tighter, faster, smaller. Lecture Notes in Computer Science, 2012, 7237: 700-718
doi: 10.1007/978-3-642-29011-4_41
10 Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing. 2008, 197-206
11 Cash D, Hofheinz D, Kiltz E, Peikert C. Bonsai trees, or how to delegate a lattice basis. Lecture Notes in Computer Science, 2010, 6110: 523-552
doi: 10.1007/978-3-642-13190-5_27
12 Boyen X. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more. Lecture Notes in Computer Science, 2010, 6056: 499-517
doi: 10.1007/978-3-642-13013-7_29
13 Li F, Muhaya F, Khan M, Takagi T. Lattice-based signcryption. Concurrency and Computation: Practice and Experience, 2012, 25(4): 2112-2122
14 Wang F, Hu Y, Wang C. Post-quantum secure hybrid signcryption from lattice assumption. Applied Mathematics & Information Sciences, 2012, 6(1): 23-28
15 Bellare M, Rogaway P. The exact security of digital signatures-how to sign with rsa and rabin. Lecture Notes in Computer Science, 1996, 1070: 399-416
doi: 10.1007/3-540-68339-9_34
16 Canetti R, Goldreich O, Halevi S. The random oracle methodology, revisited. Journal of the ACM. 2004, 51(4): 557-594
doi: 10.1145/1008731.1008734
17 Yan J, Wang L, Wang L, Yang Y, Yao W. Efficient lattice-based signcryption in standard model. Mathematical Problems in Engineering. 2013, 2013: 1-18
18 Ajtai M. Generating hard instances of the short basis problem. Lecture Notes in Computer Science, 1999, 1644: 1-9
doi: 10.1007/3-540-48523-6_1
19 Agrawal S, Boneh D, Boyen X. Efficient lattice (h)ibe in the standard model. Lecture Notes in Computer Science, 2010, 6110: 553-572
doi: 10.1007/978-3-642-13190-5_28
20 Peikert C. Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint Archive. 20<?Pub Caret?>09: Report 2009/359
21 Regev O. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM, 2009, 56(34): 1-40
doi: 10.1145/1568318.1568324
22 Micciancio D, Regev O. Worst-case to average-case reductions based on gaussian measures. SIAM Journal on Computing. 2007, 37(1): 267-302
doi: 10.1137/S0097539705447360
[1] Yanwei ZHOU, Bo YANG. Practical continuous leakage-resilient CCA secure identity-based encryption[J]. Front. Comput. Sci., 2020, 14(4): 144804-.
[2] Momeng LIU, Yupu HU. Universally composable oblivious transfer from ideal lattice[J]. Front. Comput. Sci., 2019, 13(4): 879-906.
[3] Cungen CAO,Yuefei SUI,Zaiyue ZHANG. The M-computations induced by accessibility relations in nonstandard models M of Hoare logic[J]. Front. Comput. Sci., 2016, 10(4): 717-725.
[4] Hao WANG,Zhen LIU,Zhe LIU,Duncan S. WONG. Identity-based aggregate signcryption in the standard model from multilinear maps[J]. Front. Comput. Sci., 2016, 10(4): 741-754.
[5] Mingming JIANG,Yupu HU,Hao LEI,Baocang WANG,Qiqi LAI. Lattice-based certificateless encryption scheme[J]. Front. Comput. Sci., 2014, 8(5): 828-836.
[6] Wenbo SHI,Neeraj KUMAR,Peng GONG,Zezhong ZHANG. Cryptanalysis and improvement of a certificateless signcryption scheme without bilinear pairing[J]. Front. Comput. Sci., 2014, 8(4): 656-666.
[7] Lin CHENG, Qiaoyan WEN, Zhengping JIN, Hua ZHANG. Cryptanalysis and improvement of a certificateless encryption scheme in the standard model[J]. Front. Comput. Sci., 2014, 8(1): 163-173.
[8] Xiujie ZHANG, Chunxiang XU, Wenzheng ZHANG, Wanpeng LI. Threshold public key encryption scheme resilient against continual leakage without random oracles[J]. Front Comput Sci, 2013, 7(6): 955-968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed