Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2016, Vol. 10 Issue (4) : 741-754    https://doi.org/10.1007/s11704-015-5138-2
RESEARCH ARTICLE
Identity-based aggregate signcryption in the standard model from multilinear maps
Hao WANG1,2,Zhen LIU3,Zhe LIU4,*(),Duncan S. WONG3
1. School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China
2. Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Jinan 250014, China
3. Security and Data Sciences, Hong Kong Applied Science and Technology Research Institute (ASTRI), Hong Kong, China
4. Laboratory of Algorithmics, Cryptology and Security (LACS), University of Luxembourg, Luxembourg L-1359, Luxembourg
 Download: PDF(409 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Signcryption is a public key cryptographic method that achieves unforgeability and confidentiality simultaneously with significantly smaller overhead than that required by “digital signature followed by public key encryption”. It does this by signing and encrypting a message in a single step. An aggregate signcryption scheme allows individual signcryption ciphertexts intended for the same recipient to be aggregated into a single (shorter) combined ciphertext without losing any of the security guarantees. We present an aggregate signcryption scheme in the identity-based setting using multilinear maps, and provide a proof of security in the standard model. To the best of our knowledge, our new scheme is the first aggregate signcryption scheme that is secure in the standard model.

Keywords identity-based aggregate signcryption      multilinear maps      standard model      GGH framework     
Corresponding Author(s): Zhe LIU   
Just Accepted Date: 11 September 2015   Online First Date: 06 April 2016    Issue Date: 06 July 2016
 Cite this article:   
Hao WANG,Zhen LIU,Zhe LIU, et al. Identity-based aggregate signcryption in the standard model from multilinear maps[J]. Front. Comput. Sci., 2016, 10(4): 741-754.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-5138-2
https://academic.hep.com.cn/fcs/EN/Y2016/V10/I4/741
1 Zheng Y L. Digital signcryption or how to achieve cost (signature & encryption)<<cost(signature) + cost(encryption). In: Proceedings of the 17th Annual International Cryptology Conference. 1997, 165–179
https://doi.org/10.1007/bfb0052234
2 Baek J, Steinfeld R, Zheng Y L. Formal proofs for the security of signcryption. In: Proceedings of the 5th International Workshop on Practice and Theory in Public Key Cryptosystems. 2002, 80–98
https://doi.org/10.1007/3-540-45664-3_6
3 Zheng Y L, Imai H. How to construct efficient signcryption schemes on elliptic curves. Information Processing Letters, 1998, 68(5): 227–233
https://doi.org/10.1016/S0020-0190(98)00167-7
4 Bao F, Deng R H. A signcryption scheme with signature directly verifiable by public key. In: Proceedings of the First International Workshop on Practice and Theory in Public Key Cryptography. 1998, 55–59
https://doi.org/10.1007/BFb0054014
5 Hwang R S, Lai C H, Su F F. An efficient signcryption scheme with forward secrecy based on elliptic curve. Applied Mathematics and Computation, 2005, 167(2): 870–881
https://doi.org/10.1016/j.amc.2004.06.124
6 Shamir A. Identity-based cryptosystems and signature schemes. In: Proceedings of CRYPTO. 1984, 47–53
7 Malone-Lee J. Identity-based signcryption. IACR Cryptology ePrint Archive, 2002, 98
8 Libert B, Quisquater J J. New identity based signcryption schemes from pairings. IACR Cryptology ePrint Archive, 2003, 23
9 Chow S S M, Yiu S M, Hui L C K, Chow K P. Efficient forward and provably secure id-based signcryption scheme with public verifiability and public ciphertext authenticity. In: Proceedings of the 6th International Conference on Information Security and Cryptology (ICISC 2003). 2003, 352–369
10 Boyen X. Multipurpose identity-based signcryption. In: Proceedings of the 23rd Annual International Cryptology Conference. 2003, 383–399
https://doi.org/10.1007/978-3-540-45146-4_23
11 Chen L Q, Malone-Lee J. Improved identity-based signcryption. In: Proceedings of the 8th International Workshop on Theory and Practice in Public Key Cryptography. 2005, 362–379
https://doi.org/10.1007/978-3-540-30580-4_25
12 Barreto P S L M, Libert B, McCullagh N, Quisquater J J. Efficient and provably-secure identity-based signatures and signcryption from bilinear maps. In: Proceedings of the 11th International Conference on the Theory and Application of Cryptology and Information Security. 2005, 515–532
https://doi.org/10.1007/11593447_28
13 Selvi S S D, Vivek S S, Shriram J, Kalaivani S, Rangan C P. Identity based aggregate signcryption schemes. In: Proceedings of the 10th International Conference on Cryptology in India. 2009, 378–397
https://doi.org/10.1007/978-3-642-10628-6_25
14 Ren X Y, Qi Z H, Geng Y. Provably secure aggregate signcryption scheme. ETRI Journal, 2012, 34(3): 421–428
https://doi.org/10.4218/etrij.12.0111.0215
15 Qi Z H, Ren X Y, Geng Y. Provably secure general aggregate signcryption scheme in the random oracle modele. China Communications, 2012, 9(11): 107–116
16 Kar J. Provably secure identity-based aggregate signcryption scheme in random oracles. IACR Cryptology ePrint Archive, 2013, 37
17 Dent A W. Aggregate signcryption. IACR Cryptology ePrint Archive, 2012, 200
18 Eslami Z, Pakniat N. Certificateless aggregate signcryption schemes. IACR Cryptology ePrint Archive, 2011, 360
19 Lu H J, Xie Q. An efficient certificateless aggregate signcryptionscheme from pairings. In: Proceedings of 2011 International Conference on Electronics, Communications and Control (ICECC-2011). 2011, 132–135
https://doi.org/10.1109/ICECC.2011.6067635
20 Canetti R, Goldreich O, Halevi S. The random oracle methodology, revisited. Journal of the ACM, 2004, 51(4): 557–594
https://doi.org/10.1145/1008731.1008734
21 Hohenberger S, Sahai A, Waters B. Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Proceedings of the 33rd Annual Cryptology Conference, Part I. 2013, 494–512
https://doi.org/10.1007/978-3-642-40041-4_27
22 Boneh D, Silverberg A. Applications of multilinear forms to cryptography. Contemporary Mathematics, 2003, 324(1): 71–90
https://doi.org/10.1090/conm/324/05731
23 Garg S, Gentry C, Halevi S. Candidate multilinear maps from ideal lattices. In: Proceedings of the 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques. 2013, 1–17
https://doi.org/10.1007/978-3-642-38348-9_1
24 Freire E S V, Hofheinz D, Paterson K G, Striecks C. Programmable hash functions in the multilinear setting. In: Proceedings of the 33rd Annual Cryptology Conference, Part I. 2013, 513–530
https://doi.org/10.1007/978-3-642-40041-4_28
25 Wang H, Zheng Z H, Yang B. New identity-based key-encapsulation mechanism and its applications in cloud computing. International Journal of High Performance Computing and Networking, 2015, 8(2): 124–134
https://doi.org/10.1504/IJHPCN.2015.070012
26 Hoffstein J, Pipher J, Silverman J H. NTRU: a ring-based public key cryptosystem. In: Proceedings of the 3rd Intemational Symposium on Algorithmic Number Theory (ANTS-III). 1998, 267–288
https://doi.org/10.1007/BFb0054868
[1] FCS-0741-15138-ZL_suppl_1 Download
[1] Yanwei ZHOU, Bo YANG. Practical continuous leakage-resilient CCA secure identity-based encryption[J]. Front. Comput. Sci., 2020, 14(4): 144804-.
[2] Cungen CAO,Yuefei SUI,Zaiyue ZHANG. The M-computations induced by accessibility relations in nonstandard models M of Hoare logic[J]. Front. Comput. Sci., 2016, 10(4): 717-725.
[3] Xiuhua LU,Qiaoyan WEN,Zhengping JIN,Licheng WANG,Chunli YANG. A lattice-based signcryption scheme without random oracles[J]. Front. Comput. Sci., 2014, 8(4): 667-675.
[4] Lin CHENG, Qiaoyan WEN, Zhengping JIN, Hua ZHANG. Cryptanalysis and improvement of a certificateless encryption scheme in the standard model[J]. Front. Comput. Sci., 2014, 8(1): 163-173.
[5] Xiujie ZHANG, Chunxiang XU, Wenzheng ZHANG, Wanpeng LI. Threshold public key encryption scheme resilient against continual leakage without random oracles[J]. Front Comput Sci, 2013, 7(6): 955-968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed