Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    2013, Vol. 7 Issue (6) : 955-968    https://doi.org/10.1007/s11704-013-3051-0
RESEARCH ARTICLE
Threshold public key encryption scheme resilient against continual leakage without random oracles
Xiujie ZHANG1(), Chunxiang XU1, Wenzheng ZHANG2, Wanpeng LI1
1. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 2. Science and Technology on Communication Security Laboratory, The 30th Research Institute of China Electronics Technology Group Corporation, Chengdu 610041, China
 Download: PDF(368 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Threshold public key encryption allows a set of servers to decrypt a ciphertext if a given threshold of authorized servers cooperate. In the setting of threshold public key encryption, we consider the question of how to correctly decrypt a ciphertext where all servers continually leak information about their secret keys to an external attacker. Dodis et al. and Akavia et al. show two concrete schemes on how to store secrets on continually leaky servers. However, their constructions are only interactive between two servers. To achieve continual leakage security among more than two servers, we give the first threshold public key encryption scheme against adaptively chosen ciphertext attack in the continual leakage model under three static assumptions. In our model, the servers update their keys individually and asynchronously, without any communication between two servers. Moreover, the update procedure is re-randomized and the randomness can leak as well.

Keywords leakage-resilient      continual leakage      Threshold Public Key Encryption      adaptive chosen ciphertext security      standard model     
Corresponding Author(s): ZHANG Xiujie,Email:2008xiujie@163.com   
Issue Date: 01 December 2013
 Cite this article:   
Xiujie ZHANG,Chunxiang XU,Wenzheng ZHANG, et al. Threshold public key encryption scheme resilient against continual leakage without random oracles[J]. Front Comput Sci, 2013, 7(6): 955-968.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-3051-0
https://academic.hep.com.cn/fcs/EN/Y2013/V7/I6/955
1 Boneh D, Boyen X, Halevi S. Chosen ciphertext secure public key threshold encryption without random oracles. In: Proceedings of the 2006 RSA Conference on Topics in Cryptology . 2006, 226-243
doi: 10.1007/11605805_15
2 Canetti R, Goldwasser S. An efficient threshold public key cryptosystem secure against adaptive chosen ciphertext attack. In: Proceedings of the 1999 International Conference on the Theory and Application of Cryptographic Techniques . 1999, 90-106
3 Desmedt Y, Frankel Y. Threshold cryptosystems. Lecture Notes in Computer Science, 1989, 435: 307-315
doi: 10.1007/0-387-34805-0_28
4 Libert B, Yung M. Adaptively secure non-interactive threshold cryptosystems. In: Proceedings of the 38th International Conference on Automata, Languages and Programming . 2011, 588-600
doi: 10.1007/978-3-642-22012-8_47
5 Dodis Y, Lewko A, Waters B, Wichs D. Storing secrets on continually leaky devices. In: Proceedings of the 52nd IEEE Annual Symposium on Foundations of Computer Science . 2011, 688-697
6 Akavia A, Goldwasser S, Hazay C. Distributed public key schemes secure against continual leakage. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing . 2012, 155-164
doi: 10.1145/2332432.2332462
7 Kocher P C. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In: Proceedings of the 16th Annual International Cryptology Conference . 1996, 104-113
8 Kocher P, Jaffe J, Jun B. Differential power analysis. In: Proceedings of the 19th Annual International Cryptology Conference . 1999, 388-397
9 Halderman J. Lest we remember: cold-boot attacks on encryption keys. Communications of the ACM , 2009, 52(5): 91-98
doi: 10.1145/1506409.1506429
10 Naor M, Segev G. Public-key cryptosystems resilient to key leakage. SIAM Journal on Computing , 2012, 41(4): 772-814
doi: 10.1137/100813464
11 Micali S, Reyzin L. Physically observable cryptography. Lecture Notes in Computer Science , 2004, 278-296
doi: 10.1007/978-3-540-24638-1_16
12 Dziembowski S, Pietrzak K. Leakage-resilient cryptography. In: Proceedings of the 49th Annual IEEE Annual Symposium on Foundations of Computer Science . 2008, 293-302
13 Akavia A, Goldwasser S, Vaikuntanathan V. Simultaneous hardcore bits and cryptography against memory attacks. In: Proceedings of the 6th Conference on Theory of Cryptography . 2009, 474-495
doi: 10.1007/978-3-642-00457-5_28
14 Alwen J, Dodis Y, Wichs D. Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Proceedings of the 29th Annual International International Cryptology Conference . 2009, 36-54
15 Brakerski Z, Kalai Y T, Katz J, Vaikuntanathan V. Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science . 2010, 501-510
16 Lewko A, Rouselakis Y, Waters B. Achieving leakage resilience through dual system encryption. In: Proceedings of the 8th Conference on Theory of Cryptography . 2011, 70-88
doi: 10.1007/978-3-642-19571-6_6
17 Dodis Y, Haralambiev K, López-Alt A, Wichs D. Cryptography against continuous memory attacks. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science . 2010, 511-520
18 Lewko A, Lewko M, Waters B. How to leak on key updates. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing . 2011, 725-734
19 Waters B. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In: Proceedings of the 29th Annual International Cryptology Conference . 2009, 619-636
20 Lewko A, Waters B. New techniques for dual system encryption and fully secure hibe with short ciphertexts. In: Proceedings of the 7th International Conference on Theory of Cryptography . 2010, 455-479
21 Boneh D, Goh E J, Nissim K. Evaluating 2-DNF formulas on ciphertexts. In: Proceedings of the 2nd International Conference on Theory of Cryptography . 2005, 325-341
[1] Yanwei ZHOU, Bo YANG. Practical continuous leakage-resilient CCA secure identity-based encryption[J]. Front. Comput. Sci., 2020, 14(4): 144804-.
[2] Cungen CAO,Yuefei SUI,Zaiyue ZHANG. The M-computations induced by accessibility relations in nonstandard models M of Hoare logic[J]. Front. Comput. Sci., 2016, 10(4): 717-725.
[3] Hao WANG,Zhen LIU,Zhe LIU,Duncan S. WONG. Identity-based aggregate signcryption in the standard model from multilinear maps[J]. Front. Comput. Sci., 2016, 10(4): 741-754.
[4] Xiuhua LU,Qiaoyan WEN,Zhengping JIN,Licheng WANG,Chunli YANG. A lattice-based signcryption scheme without random oracles[J]. Front. Comput. Sci., 2014, 8(4): 667-675.
[5] Lin CHENG, Qiaoyan WEN, Zhengping JIN, Hua ZHANG. Cryptanalysis and improvement of a certificateless encryption scheme in the standard model[J]. Front. Comput. Sci., 2014, 8(1): 163-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed