Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2014, Vol. 8 Issue (1) : 163-173    https://doi.org/10.1007/s11704-013-3090-6
RESEARCH ARTICLE
Cryptanalysis and improvement of a certificateless encryption scheme in the standard model
Lin CHENG(), Qiaoyan WEN, Zhengping JIN, Hua ZHANG
State Key Laboratory of Networking and Switch Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
 Download: PDF(328 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Certificateless public key cryptography eliminates inherent key escrow problem in identity-based cryptography, and does not yet requires certificates as in the traditional public key infrastructure. In this paper, we give crypt-analysis to Hwang et al.’s certificateless encryption scheme which is the first concrete certificateless encryption scheme that can be proved to be secure against “malicious-but-passive” key generation center (KGC) attack in the standard model. Their scheme is proved to be insecure even in a weaker security model called “honest-but-curious” KGC attack model. We then propose an improved scheme which is really secure against “malicious-but-passive” KGC attack in the standard model.

Keywords standard model      provable security      certificateless public key cryptography     
Corresponding Author(s): CHENG Lin   
Issue Date: 01 February 2014
 Cite this article:   
Lin CHENG,Qiaoyan WEN,Zhengping JIN, et al. Cryptanalysis and improvement of a certificateless encryption scheme in the standard model[J]. Front. Comput. Sci., 2014, 8(1): 163-173.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-3090-6
https://academic.hep.com.cn/fcs/EN/Y2014/V8/I1/163
1 Al-riyami S S, Paterson K G. Certificateless public key cryptography. Lecture Notes in Computer Science, 2003, 2894: 452-473
doi: 10.1007/978-3-540-40061-5_29
2 Shamir A. Identity-based cryptosystems and signature schemes. Lecture Notes in Computer Science, 1985, 196: 47-53
doi: 10.1007/3-540-39568-7_5
3 Au M H, Mu Y, Chen J, Wong D S, Liu J K, Yang G. Malicious kgc attacks in certificateless cryptography. In: Proceedings of the 2nd ACM Symposium on Information, Computer and Communications Security. 2007, 302-311
4 Baek J, Safavi-Naini R, Susilo W. Certificateless public key encryption without pairing. In: Proceedings of the 8th International Conference on Information Security. 2005, 134-148
5 Libert B, Quisouater J J. On constructing certificateless cryptosystems from identity based encryption. Lecture Notes in Computer Science, 2006, 3958: 474-490
doi: 10.1007/11745853_31
6 Sun Y, Li H. Short-ciphertext and BDH-based CCA2 secure certificateless encryption. Science China Information Sciences, 2010, 53(10): 2005-2015
doi: 10.1007/s11432-010-4076-8
7 Bellare M, Rogaway P. Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security. 1993, 62-73
8 Yum D H, Lee P J. Generic construction of certificateless encryption. Lecture Notes in Computer Science, 2004, 3043: 802-811
doi: 10.1007/978-3-540-24707-4_93
9 Huang Q, Wong D S. Generic certificateless encryption secure against malicious-but-passive kgc attacks in the standard model. Journal of Computer Science and Technology, 2010, 25(4): 807-826
doi: 10.1007/s11390-010-9367-4
10 Hu B C, Wong D S, Zhang Z, Deng X. Key replacement attack against a generic construction of certificateless signature. Lecture Notes in Computer Science, 2006, 4058: 235-246
doi: 10.1007/11780656_20
11 Liu J K, Au M H, Susilo W. Self-generated-certificate public key cryptography and certificateless signature/encryption scheme in the standard model. In: Proceedings of the 2nd ACM Symposium on Information, Computer and Communications Security. 2007, 273-283
12 Dent A W, Libert B, Paterson K G. Certificateless encryption schemes strongly secure in the standard model. Lecture Notes in Computer Science, 2008, 4939: 344-359
doi: 10.1007/978-3-540-78440-1_20
13 Guo H, Zhang X, Mu Y, Li Z. An efficient certificateless encryption scheme in the standard model. In: Proceedings of the 3rd International Conference on Network and System Security. 2009, 302-309
14 Hwang Y H, Liu J K, Chow S S. Certificateless public key encryption secure against malicious KGC attacks in the standard model. Journal of Universal Computer Science, 2008, 14(3): 463-480
15 Zhang G, Wang X. Certificateless encryption scheme secure in standard model. Tsinghua Science & Technology, 2009, 14(4): 452-459
doi: 10.1016/S1007-0214(09)70101-4
16 Shen L, Zhang F, Sun Y, Li S. Cryptanalysis of a certificateless encryption scheme in the standard model. In: Proceedings of the 4th International Conference on Intelligent Networking and Collaborative Systems. 2012, 329-333
17 Dent A W. A survey of certificateless encryption schemes and security models. International Journal of Information Security, 2008, 7(5): 349-377
doi: 10.1007/s10207-008-0055-0
18 Cheng Z, Comley R. Efficient certificateless public key encryption. IACR Cryptology Eprint Archive: Report 2005/249, 2005
19 Huang Q, Wong D S. Generic certificateless encryption in the standard model. In: Proceedings of the 2nd International Conference on Advances in Information and Computer Security. 2007, 278-291
doi: 10.1007/978-3-540-75651-4_19
20 Huang Q, Wong D S. Generic certificateless key encapsulation mechanism. In: Proceedings of the 12th Australasian Conference on Information Security and Privacy. 2007, 215-229
doi: 10.1007/978-3-540-73458-1_17
[1] Yanwei ZHOU, Bo YANG. Practical continuous leakage-resilient CCA secure identity-based encryption[J]. Front. Comput. Sci., 2020, 14(4): 144804-.
[2] Yudi ZHANG, Debiao HE, Mingwu ZHANG, Kim-Kwang Raymond CHOO. A provable-secure and practical two-party distributed signing protocol for SM2 signature algorithm[J]. Front. Comput. Sci., 2020, 14(3): 143803-.
[3] Wei GAO, Guilin WANG, Kefei CHEN, Xueli WANG. Efficient identity-based threshold decryption scheme from bilinear pairings[J]. Front. Comput. Sci., 2018, 12(1): 177-189.
[4] Cungen CAO,Yuefei SUI,Zaiyue ZHANG. The M-computations induced by accessibility relations in nonstandard models M of Hoare logic[J]. Front. Comput. Sci., 2016, 10(4): 717-725.
[5] Hao WANG,Zhen LIU,Zhe LIU,Duncan S. WONG. Identity-based aggregate signcryption in the standard model from multilinear maps[J]. Front. Comput. Sci., 2016, 10(4): 741-754.
[6] Huiyan ZHAO,Jia YU,Shaoxia DUAN,Xiangguo CHENG,Rong HAO. Key-insulated aggregate signature[J]. Front. Comput. Sci., 2014, 8(5): 837-846.
[7] Xiuhua LU,Qiaoyan WEN,Zhengping JIN,Licheng WANG,Chunli YANG. A lattice-based signcryption scheme without random oracles[J]. Front. Comput. Sci., 2014, 8(4): 667-675.
[8] Wenbo SHI,Neeraj KUMAR,Peng GONG,Zezhong ZHANG. Cryptanalysis and improvement of a certificateless signcryption scheme without bilinear pairing[J]. Front. Comput. Sci., 2014, 8(4): 656-666.
[9] Xiujie ZHANG, Chunxiang XU, Wenzheng ZHANG, Wanpeng LI. Threshold public key encryption scheme resilient against continual leakage without random oracles[J]. Front Comput Sci, 2013, 7(6): 955-968.
[10] Haiyan SUN, Qiaoyan WEN, Hua ZHANG, Zhengping JIN. A novel pairing-free certificateless authenticated key agreement protocol with provable security[J]. Front Comput Sci, 2013, 7(4): 544-557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed