Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2015, Vol. 9 Issue (3) : 375-382    https://doi.org/10.1007/s11704-014-4230-3
RESEARCH ARTICLE
Hybrid fusion and interpolation algorithm with near-infrared image
Xiaoyan LUO1,*(),Jun ZHANG2,Qionghai DAI3
1. Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China
2. National Key Laboratory of CNS/ATM, School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
3. Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Automation, Tsinghua University, Beijing 100084, China
 Download: PDF(663 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silicon-based digital cameras can record visible and near-infrared (NIR) information, in which the full color visible image (RGB) must be restored from color filter array (CFA) interpolation. In this paper, we propose a unified framework for CFA interpolation and visible/NIR image combination. To obtain a high quality color image, the traditional color interpolation from raw CFA data is improved at each pixel, which is constrained by the corresponding monochromatic NIR image in gradient difference. The experiments indicate the effectiveness of this hybrid scheme to acquire joint color and NIR information in real-time, and show that this hybrid process can generate a better color image when compared to treating interpolation and fusion separately.

Keywords image fusion      color filter array (CFA)      interpolation      demosaicing     
Corresponding Author(s): Xiaoyan LUO   
Issue Date: 18 May 2015
 Cite this article:   
Xiaoyan LUO,Jun ZHANG,Qionghai DAI. Hybrid fusion and interpolation algorithm with near-infrared image[J]. Front. Comput. Sci., 2015, 9(3): 375-382.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-014-4230-3
https://academic.hep.com.cn/fcs/EN/Y2015/V9/I3/375
1 Guarnera M, Messina G, Tomaselli V. Adaptive color demosaicing and false color removal. Journal of Electronic Imaging, 2010, 19(2): 1-16
https://doi.org/10.1117/1.3432486
2 Menon D, Andriani S, Calvagno G. Demosaicing with directional filtering and a posteriori decision. IEEE Transactions on Image Processing, 2007, 16(1): 132-141
https://doi.org/10.1109/TIP.2006.884928
3 Su C Y, Kao W C. Effective demosaicing using subband correlation. IEEE Transactions on Consumer Electronics, 2009, 55(1): 199-204
https://doi.org/10.1109/TCE.2009.4814435
4 Chung K H, Chan Y H. Low-complexity color demosaicing algorithm based on integrated gradients. Journal of Electronic Imaging, 2010, 19(2): 1-15
https://doi.org/10.1117/1.3432484
5 Itoh Y. Similarity-based demosaicing algorithm using unified highfrequency map. IEEE Transactions on Consumer Electronics, 2011, 57(2): 597-605
https://doi.org/10.1109/TCE.2011.5955197
6 Hirakawa K, Parks T W. Adaptive homogeneity-directed demosaicing algorithm. IEEE Transactions on Image Processing, 2005, 14(3): 360-369
https://doi.org/10.1109/TIP.2004.838691
7 Wu X, Zhang N. Primary-consistent soft-decision color demosaicking for digital cameras. IEEE Transactions on Image Processing, 2004, 13(9): 1263-1274
https://doi.org/10.1109/TIP.2004.832920
8 Gunturk B K, Altunbasak Y, Mersereau R M. Color plane interpolation using alternating projections. IEEE Transactions on Image P<?Pub Caret?>rocess, 2002, 11(9): 997-1013
https://doi.org/10.1109/TIP.2002.801121
9 Lian N, Chang L, Tan Y, Zagorodnov V. Adaptive filtering for color filter array demosaicking. IEEE Transactions on Image Processing, 2007,16(10): 2515-2525
https://doi.org/10.1109/TIP.2007.904459
10 Lu Y M, Karzand M, Vetterli M. Demosaicking by alternating projections: theory and fast one-step implementation. IEEE Transactions on Image Processing, 2010, 19(8): 2085-2098
https://doi.org/10.1109/TIP.2010.2045710
11 Bennett E P, Mason J L, McMillan L. Multispectral bilateral video fusion. IEEE Transactions on Image Processing, 2007, 16(5): 1185-1194
https://doi.org/10.1109/TIP.2007.894236
12 Zhang X, Sim T, Miao X. Enhancing photographs with near infrared images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1-8
13 Schaul L, Fredembach C, Süsstrunk S. Color image dehazing using near-infrared. In: Proceedings of the 16th IEEE International Conference on Image Processing. 2009, 1629-1632
14 Süsstrunk S, Fredembach C, Tamburrino D. Automatic skin enhancement with visible and near-infrared image fusion. In: Proceedings of the International Conference on Multimedia. 2010, 1693-1696
https://doi.org/10.1145/1873951.1874324
15 Fredembach C, Süsstrunk S. Illuminant estimation and detection using near-infrared. In: Proceedings of the International Society for Optics and Photonics Digital Photography. 2009
16 Salamati N, Fredembach C, Süsstrunk S. Material classification using color and NIR images. In: Proceedings of the 17th Color Imaging Conference Final Program and Proceedings. 2009, 216-227
17 Fredembach C, Süsstrunk S. Colouring the near-infrared. In: Proceedings of the 16th Color Imaging Conference Final Program and Proceedings. 2008, 176-182
18 Krishnan D, Fergus R. Dark flash photography. ACM Transactions on Graphics, 2009, 28(3), Artile No. 96
19 Matsui S, Okabe T, Shimano M, Sato Y. Image enhancement of lowlight scenes with near-infrared flash images. Lecture Notes in Computer Science, 2010, 5994: 213-223
https://doi.org/10.1007/978-3-642-12307-8_20
20 Hirakawa K, Parks TW. Joint demosaicing and denoising. IEEE Transactions on Image Processing, 2006, 15(8): 2146-2157
https://doi.org/10.1109/TIP.2006.875241
21 Donoho D L. Sparse components of images and optimal atomic decomposition. Constructive Approximation, 2001, 17(3): 353-382
https://doi.org/10.1007/s003650010032
22 Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
https://doi.org/10.1109/TIT.2006.871582
23 Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences, 2008, 1(3): 248-272
https://doi.org/10.1137/080724265
24 Lu Y M, Fredembach C, Vetterli M, Süsstrunk S. Designing color filter arrays for the joint capture of visible and near-infrared images. In: Proceedings of the 16th IEEE International Conference on Image Processing. 2009, 3797-3800
https://doi.org/10.1109/icip.2009.5414324
25 Smith P R. Bilinear interpolation of digital images. Ultramicroscopy, 1981, 6(2): 201-204
https://doi.org/10.1016/0304-3991(81)90061-9
26 Hamilton J F, Adams J E. Adaptive color plane interpolation in single sensor color electronic camera. US Patent, 5 629 734, 1997-<month>07</month>-<day>29</day>
[1] Supplementary Material-Highlights in 3-page ppt
Download
[1] Xuexia ZHONG,Guorui FENG,Jian WANG,Wenfei WANG,Wen SI. A novel adaptive image zooming scheme via weighted least-squares estimation[J]. Front. Comput. Sci., 2015, 9(5): 703-712.
[2] Yin LU,Fuxiang WANG,Xiaoyan LUO,Feng LIU. Novel infrared and visible image fusion method based on independent component analysis[J]. Front. Comput. Sci., 2014, 8(2): 243-254.
[3] Tang Yuanyan. Status of pattern recognition with wavelet analysis[J]. Front. Comput. Sci., 2008, 2(3): 268-294.
[4] YANG Xuejun, WANG Panfeng, DU Yunfei, ZHOU Haifang. A data-distributed parallel algorithm for wavelet-based fusion of remote sensing images[J]. Front. Comput. Sci., 2007, 1(2): 231-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed