Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2015, Vol. 9 Issue (6) : 846-859    https://doi.org/10.1007/s11704-015-4064-7
RESEARCH ARTICLE
Hierarchical caches in content-centric networks: modeling and analysis
Zixiao JIA1,2,Jiwei HUANG1,Chuang LIN1,*()
1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2. National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China
 Download: PDF(862 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Content-centric network (CCN) is a new Internet architecture in which content is treated as the primitive of communication. In CCN, routers are equipped with content stores at the content level, which act as caches for frequently requested content. Based on this design, the Internet is available to provide content distribution services without any application-layer support.

In addition, as caches are integrated into routers, the overall performance of CCN will be deeply affected by the caching efficiency. In this paper, our aim is to gain some insights on how caches should be designed to maintain a high performance in a cost-efficient way. We try to model the two-layer cache hierarchy composed of CCN routers using a two-dimensional discrete-time Markov chain, and develop an efficient algorithm to calculate the hit ratios of these caches. Simulations validate the accuracy of our modeling method, and convey some meaningful information which can help us better understand the caching mechanism of CCN.

Keywords CCN      cache      model      analysis     
Corresponding Author(s): Chuang LIN   
Just Accepted Date: 06 August 2015   Issue Date: 10 November 2015
 Cite this article:   
Zixiao JIA,Jiwei HUANG,Chuang LIN. Hierarchical caches in content-centric networks: modeling and analysis[J]. Front. Comput. Sci., 2015, 9(6): 846-859.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4064-7
https://academic.hep.com.cn/fcs/EN/Y2015/V9/I6/846
1 Jacobson V, Smetters D K, Thornton J D, Plass M F, Briggs N H, Braynard R L. Networking named content. In: Proceedings of the 5th ACM International Conference on Emerging Networking Experiments and Technologies. 2009, 1−12
https://doi.org/10.1145/1658939.1658941
2 Che H, Tung Y, Wang Z. Hierarchical web caching systems: modeling, design and experimental results. IEEE Journal on Selected Areas in Communications, 2002, 20(7): 1305−1314
https://doi.org/10.1109/JSAC.2002.801752
3 Rosensweig E J, Kurose J, Towsley D. Approximate models for general cache networks. In: Proceedings of IEEE International Conference on INFOCOM. 2010, 1−9
https://doi.org/10.1109/infcom.2010.5461936
4 Trivedi K S. Probability and Statistics with Reliability, Queuing, and Computer Science Applications. 2nd ed. New York: John Wiley & Sons, 2001
5 Busari M, Williamson C. ProWGen: A synthetic workload generation tool for simulation evaluation of web proxy caches. Computer Networks, 2002, 38(6): 779−794
https://doi.org/10.1016/S1389-1286(01)00285-7
6 Saleh O, Hefeeda M. Modeling and caching of peer-to-peer traffic. In: Proceedings of the 14th IEEE International Conference on Network Protocols. 2006, 249−258
https://doi.org/10.1109/icnp.2006.320218
7 Williamson C. On filter effects in web caching hierarchies. ACM Transactions on Internet Technology, 2002, 2(1): 47−77
https://doi.org/10.1145/503334.503337
8 Jacobson V, Smetters D K, Briggs N H, Plass M F, Stewart P, Thornton J D, Braynard R L. VoCCN: voice-over content-centric networks. In: Proceedings of the Workshop on Re-architecting the Internet. 2009, 1−6
https://doi.org/10.1145/1658978.1658980
9 Kumar S, Shi L, Ahmed N, Gil S, Katabi D, Rus D. Carspeak: a content-centric network for autonomous driving. ACM SIGCOMM Computer Communication Review. 2012, 42(4): 259−270
https://doi.org/10.1145/2377677.2377724
10 Oh S Y, Lau D, Gerla M. Content centric networking in tactical and emergency MANETs. In: Proceedings of IEEE International Federation for Information Processing Wireless Days. 2010, 1−5
https://doi.org/10.1109/wd.2010.5657708
11 Meisel M, Pappas V, Zhang L. Ad hoc networking via named data. In: Proceedings of the 5th ACM International Workshop on Mobility in the Evolving Internet Architecture. 2010, 3−8
https://doi.org/10.1145/1859983.1859986
12 Wong W, Nikander P. Secure naming in information-centric networks. In: Proceedings of the Re-Architecting the Internet Workshop. 2010, 1−6
https://doi.org/10.1145/1921233.1921248
13 Arianfar S, Nikander P, Ott J. On content-centric router design and implications. In: Proceedings of the Re-Architecting the Internet Workshop. 2010, 5
https://doi.org/10.1145/1921233.1921240
14 Tarkoma S, Kuptsov D, Savolainen P, Sarolahti P. CAT: a last mile protocol for content-centric networks. In: Proceedings of IEEE International Conference on Communications Workshops. 2011, 1−5
https://doi.org/10.1109/iccw.2011.5963583
15 Dan A, Towsley D. An approximate analysis of the LRU and FIFO buffer replacement schemes. ACM SIGMETRICS Performance Evaluation Review, 1990, 18(1): 143−152
https://doi.org/10.1145/98460.98525
16 Carofiglio G, Gehlen V, Perino D. Experimental evaluation of memory management in content-centric networking. In: Proceedings of IEEE International Conference on Communications. 2011, 1−6
https://doi.org/10.1109/icc.2011.5962739
17 Rossi D, Rossini G. Caching performance of content centric networks under multi-path routing. Relatório téconico, Telecom ParisTech, 2011
18 Rossi D, Rossini G. On sizing CCN content stores by exploiting topological information. In: Proceedings of INFCOM Workshops. 2012, 280−285
https://doi.org/10.1109/infcomw.2012.6193506
19 Fricker C, Robert P, Roberts J, Sbihi N. Impact of traffic mix on caching performance in a content-centric network. In: Proceedings of IEEE Conference on Computer Communications Workshops. 2012, 310−315
https://doi.org/10.1109/infcomw.2012.6193511
20 Psaras I, Clegg R G, Landa R, Chai W K, Pavlou G. Modelling and evaluation of CCN-caching trees. In: Proceedings of the 10th International IFIP TC 6 Conference on Networking. 2011, 78−91
https://doi.org/10.1007/978-3-642-20757-0_7
21 Carofiglio G, Gallo M, Muscariello L, Perino D. Modeling data transfer in content-centric networking. In: Proceedings of the 23rd International Teletraffic Congress. 2011, 111−118
22 Jia Z, Zhang P, Huang J, Lin C, Lui J C S. Modeling hierarchical caches in content-centric networks. In: Proceedings of the 22nd International Conference on Computer Communications and Networks. 2013, 1−7
https://doi.org/10.1109/icccn.2013.6614153
[1] Supplementary Material-Highlights in 3-page ppt
Download
[1] Yu HU, Tiezheng NIE, Derong SHEN, Yue KOU, Ge YU. An integrated pipeline model for biomedical entity alignment[J]. Front. Comput. Sci., 2021, 15(3): 153321-.
[2] Worku J. SORI, Jiang FENG, Arero W. GODANA, Shaohui LIU, Demissie J. GELMECHA. DFD-Net: lung cancer detection from denoised CT scan image using deep learning[J]. Front. Comput. Sci., 2021, 15(2): 152701-.
[3] Jianpeng HU, Linpeng HUANG, Tianqi SUN, Ying FAN, Wenqiang HU, Hao ZHONG. Proactive planning of bandwidth resource using simulation-based what-if predictions forWeb services in the cloud[J]. Front. Comput. Sci., 2021, 15(1): 151201-.
[4] Ruidong YAN, Yi LI, Deying LI, Weili WU, Yongcai WANG. SSDBA: the stretch shrink distance based algorithm for link prediction in social networks[J]. Front. Comput. Sci., 2021, 15(1): 151301-.
[5] Wangli HAO, Ian Max ANDOLINA, Wei WANG, Zhaoxiang ZHANG. Biologically inspired visual computing: the state of the art[J]. Front. Comput. Sci., 2021, 15(1): 151304-.
[6] Zhumin CHEN, Xueqi CHENG, Shoubin DONG, Zhicheng DOU, Jiafeng GUO, Xuanjing HUANG, Yanyan LAN, Chenliang LI, Ru LI, Tie-Yan LIU, Yiqun LIU, Jun MA, Bing QIN, Mingwen WANG, Jirong WEN, Jun XU, Min ZHANG, Peng ZHANG, Qi ZHANG. Information retrieval: a view from the Chinese IR community[J]. Front. Comput. Sci., 2021, 15(1): 151601-.
[7] Qianchen YU, Zhiwen YU, Zhu WANG, Xiaofeng WANG, Yongzhi WANG. Estimating posterior inference quality of the relational infinite latent feature model for overlapping community detection[J]. Front. Comput. Sci., 2020, 14(6): 146323-.
[8] Cheng WANG, Kyung Tae KIM, Hee Yong YOUN. PopFlow: a novel flow management scheme for SDN switch of multiple flow tables based on flow popularity[J]. Front. Comput. Sci., 2020, 14(6): 146505-.
[9] Xiaochen LIU, Chunhe XIA, Tianbo WANG, Li ZHONG, Xiaojian LI. A behavior-aware SLA-based framework for guaranteeing the security conformance of cloud service[J]. Front. Comput. Sci., 2020, 14(6): 146808-.
[10] Lei CHEN, Kai SHAO, Xianzhong LONG, Lingsheng WANG. Multi-task regression learning for survival analysis via prior information guided transductive matrix completion[J]. Front. Comput. Sci., 2020, 14(5): 145312-.
[11] Chengbo YANG, Long ZHENG, Chuangyi GUI, Hai JIN. Efficient FPGA-based graph processing with hybrid pull-push computational model[J]. Front. Comput. Sci., 2020, 14(4): 144102-.
[12] Di MA, Songcan CHEN. Bayesian compressive principal component analysis[J]. Front. Comput. Sci., 2020, 14(4): 144303-.
[13] Chune LI, Yongyi MAO, Richong ZHANG, Jinpeng HUAI. A revisit to MacKay algorithm and its application to deep network compression[J]. Front. Comput. Sci., 2020, 14(4): 144304-.
[14] Yanwei ZHOU, Bo YANG. Practical continuous leakage-resilient CCA secure identity-based encryption[J]. Front. Comput. Sci., 2020, 14(4): 144804-.
[15] Yi LIU, Tian SONG, Lejian LIAO. TPII: tracking personally identifiable information via user behaviors in HTTP traffic[J]. Front. Comput. Sci., 2020, 14(3): 143801-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed