Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2021, Vol. 15 Issue (1) : 151304    https://doi.org/10.1007/s11704-020-9001-8
REVIEW ARTICLE
Biologically inspired visual computing: the state of the art
Wangli HAO1,4, Ian Max ANDOLINA6, Wei WANG3,4,5,6, Zhaoxiang ZHANG1,2,3,4()
1. Research Center for Research on Intelligent Perception and Computing, Beijing 100190, China
2. National Laboratory of Pattern Recognition, CASIA, Beijing 100190, China
3. CAS Center for Excellence in Brain Science and Intelligence Technology, CAS, Beijing 100190, China
4. University of Chinese Academy of Sciences, Beijing 100190, China
5. State Key Laboratory of Neuroscience, Shanghai 200031, China
6. Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
 Download: PDF(875 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Visual information is highly advantageous for the evolutionary success of almost all animals. This information is likewise critical for many computing tasks, and visual computing has achieved tremendous successes in numerous applications over the last 60 years or so. In that time, the development of visual computing has moved forwards with inspiration from biological mechanisms many times. In particular, deep neural networks were inspired by the hierarchical processing mechanisms that exist in the visual cortex of primate brains (including ours), and have achieved huge breakthroughs in many domainspecific visual tasks. In order to better understand biologically inspired visual computing, we will present a survey of the current work, and hope to offer some new avenues for rethinking visual computing and designing novel neural network architectures.

Keywords brain-inspired      vision      neural models      intelligence      novel neural networks     
Corresponding Author(s): Wangli HAO,Zhaoxiang ZHANG   
Just Accepted Date: 26 February 2020   Issue Date: 24 September 2020
 Cite this article:   
Wangli HAO,Ian Max ANDOLINA,Wei WANG, et al. Biologically inspired visual computing: the state of the art[J]. Front. Comput. Sci., 2021, 15(1): 151304.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-020-9001-8
https://academic.hep.com.cn/fcs/EN/Y2021/V15/I1/151304
1 A Krizhevsky, I Sutskever, G Hinton. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012, 1097–1125
2 K Simonyan, A Zisserman. Very deep convolutional networks for largescale image recognition. In: Proceedings of International Conference on Learning Representations. 2015
3 C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, V Vanhoucke, A Rabinovich. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 1–9
https://doi.org/10.1109/CVPR.2015.7298594
4 K He, X Zhang, S Ren, J Sun. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770–778
https://doi.org/10.1109/CVPR.2016.90
5 K He, X Zhang, S Ren, J Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Proceedings of European Conference on Computer Vision. 2014, 346–361
https://doi.org/10.1007/978-3-319-10578-9_23
6 T Mikolov, M Karafiat, L Burget, J Cernocky, S Khudanpur. Recurrent neural network based language model. In: Proceedings of the 11th Annual Conference of the International Speech Communication Association. 2010, 1045–1048
7 W Zaremba, I Sutskever, O Vinyals. Recurrent neural network regularization. Neural and Evolutionary Computing, 2014
8 S Hochreiter, J Schmidhuber. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780
https://doi.org/10.1162/neco.1997.9.8.1735
9 H Sak, A Senior, F Beaufays. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Proceedings of the 15th Annual Conference of the International Speech Communication Association. 2014, 338–342
10 B Hariharan, P Arbelaez, R Girshick, J Malik. Simultaneous detection and segmentation. In: Proceedings of European Conference on Computer Vision. 2014, 297–312
https://doi.org/10.1007/978-3-319-10584-0_20
11 B Hariharan, P Arbelaez, R Girshick, J Malik. Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 447–456
https://doi.org/10.1109/CVPR.2015.7298642
12 Z Hayder, X He, M Salzmann. Shape-aware instance segmentation. 2017, arXiv preprint arXiv:1612.03129
https://doi.org/10.1109/CVPR.2017.70
13 S Liu, J Jia, S Fidler, R Urtasun. SGN: sequential grouping networks for instance segmentation. In: Proceedings of IEEE International European Conference on Computer Vision. 2017
https://doi.org/10.1109/ICCV.2017.378
14 R Girshick, J Donahue, T Darrell, J Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 580–587
https://doi.org/10.1109/CVPR.2014.81
15 R Girshick. Fast R-CNN. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1440–1448
https://doi.org/10.1109/ICCV.2015.169
16 S Ren, K He, R Girshick, J Sun. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015, 91–99
17 C Szegedy, D Erhan. Deep neural networks for object detection. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013, 2553–2561
18 D Erhan, C Szegedy, A Toshev, D Anguelov. Scalable object detection using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 2155–2162
https://doi.org/10.1109/CVPR.2014.276
19 C Szegedy, S Reed, D Erhan, D Anguelov. Scalable, high-quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014
20 P J Phillips, A N Yates, Y Hu, C A Hahn, E Noyes, K Jackson, J G Cavazos, G Jeckeln, R Ranjan, S Sankaranarayanan, J C Chen, C D Castillo, R Chellappa, D White, A J O’Toole. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(24): 6171–6176
https://doi.org/10.1073/pnas.1721355115
21 K Fukushima, S Miyake. Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Amari S, Arbib M A, eds. Competition and Cooperation in Neural Nets. Springer, Berlin, Heidelberg, 1982
https://doi.org/10.1007/978-3-642-46466-9_18
22 M Jim, L G David. Multiclass object recognition with sparse, localized features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006, 11–18
23 B Averbeck, P E Latham, A Pouget. Neural correlations, population coding and computation. Nature Reviews Neuroscience, 2006, 7(5): 358–366
https://doi.org/10.1038/nrn1888
24 A Faisal, L Selen, D Wolpert. Noise in the nervous system. Nature Reviews Neuroscience, 2008, 9(4): 292–303
https://doi.org/10.1038/nrn2258
25 E Schneidman. Towards the design principles of neural population codes. Current Opinion in Neurobiology, 2016, 37: 133–140
https://doi.org/10.1016/j.conb.2016.03.001
26 A Kohn, R Coencagli, I Kanitscheider, A Pouget. Correlations and neuronal population information. Annual Review of Neuroscience, 2016, 39(1): 237–256
https://doi.org/10.1146/annurev-neuro-070815-013851
27 R Echeveste, M Lengyel. The redemption of noise: inference with neural populations. Trends in Neurosciences, 2018, 41(11): 767–770
https://doi.org/10.1016/j.tins.2018.09.003
28 N Srivastava, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958
29 L Wan, M Zeiler, S Zhang, Y LeCun, R Fergus. Regularization of neural networks using dropconnect. In: Proceedings of International Conference on Machine Learning. 2013, 1058–1066
30 G Huang, Y Sun, Z Liu, D Sedra, K Q Weinberger. Deep networks with stochastic depth. In: Proceedings of European Conference on Computer Vision. 2016, 646–661
https://doi.org/10.1007/978-3-319-46493-0_39
31 G Zhao, J Wang, Z Zhang. Random shifting for CNN: a solution to reduce information loss in down-sampling layers. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 3476–3482
https://doi.org/10.24963/ijcai.2017/486
32 A M Ni, S O Murray, G D Horwitz. Object-centered shifts of receptive field positions in monkey primary visual cortex. Current Biology, 2014, 24: 1653–1658
https://doi.org/10.1016/j.cub.2014.06.003
33 J Aguila, F J Cudeiro, C Rivadulla. Suppression of V1 feedback produces a shift in the topographic representation of receptive fields of LGN cells by unmasking latent retinal drives. Cerebral Cortex, 2017, 27(6): 3331–3345
https://doi.org/10.1093/cercor/bhx071
34 W Wang, IM Andolina, Y Lu, H E Jones, A M Sillito. Focal gain control of thalamic visual receptive fields by layer 6 corticothalamic feedback. Cerebral Cortex, 2016, 28(1): 267–280
https://doi.org/10.1093/cercor/bhw376
35 M Tsodyks, T Kenet, A Grinvald, A Arieli. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science, 1999, 286(5446): 1943–1946
https://doi.org/10.1126/science.286.5446.1943
36 L Muller, F Chavane, J Reynolds, T J Sejnowski. Cortical travelling waves: mechanisms and computational principles. Nature Reviews Neuroscience, 2018, 19(5): 255–268
https://doi.org/10.1038/nrn.2018.20
37 S Sabour, N Frosst, G E Hinton. Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 3856–3866
38 G Zhu, Z Zhang, X Zhang, C Liu. Diverse neuron type selection for convolutional neural networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 3560–3566
https://doi.org/10.24963/ijcai.2017/498
39 E H Land. The retinex theory of color vision. Scientific American, 1977, 237(6): 108–129
https://doi.org/10.1038/scientificamerican1277-108
40 G D Finlayson, E Trezzi. Shades of gray and colour constancy. In: Proceedings of the 12th Color Imaging Conference: Color Science And Engineering Systems, Technologies, Applications. Springfield: SOC Imaging Science and Technology. 2004, 37–41
41 D Van, J Weijer, T Gevers, A Gijsenij. Edge-based color constancy. IEEE Transactions on Image Processing, 2007, 16(9): 2207–2214
https://doi.org/10.1109/TIP.2007.901808
42 G Buchsbaum. A spatial processor model for object colour perception. Journal of the Franklin Institute, 1980, 310(1): 1–26
https://doi.org/10.1016/0016-0032(80)90058-7
43 J Vazquez-Corral, M Vanrell, R Baldrich, F Tous. Color constancy by category correlation. IEEE Transactions on Image Processing, 2012, 1(4): 1997–2007
https://doi.org/10.1109/TIP.2011.2171353
44 S Gao, K Yang, C Li, Y Li. Color constancy using double-opponency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 1973–1985
https://doi.org/10.1109/TPAMI.2015.2396053
45 K Yang, S Gao, C Guo, C Li, Y Li. Boundary detection using doubleopponency and spatial sparseness constraint. IEEE Transactions on Image Processing, 2015, 24(8): 2565–2578
https://doi.org/10.1109/TIP.2015.2425538
46 Y Li, C Li. A color-opponency based biological model for color constancy. I-Perception, 2011, 2(4): 384–384
https://doi.org/10.1068/ic384
47 Y Li, X Tang, C Y Li. Disinhibition among the extra-classical receptive field of retinal ganglion cells contributes to color constancy. In: Proceedings of Perception European Conference on Visual Perception Abstract. 2013
48 S Gao, K Yang, C Li, Y Li. A color constancy model with doubleopponency mechanisms. In: Proceedings of the IEEE International Conference on Computer Vision. 2013, 929–936
https://doi.org/10.1109/ICCV.2013.119
49 S Gao, W Han, K Yang, C Li, Y Li. Efficient color constancy with local surface reflectance statistics. In: Proceedings of European Conference on Computer Vision. 2014, 158–173
https://doi.org/10.1007/978-3-319-10605-2_11
50 K Yang, S Gao, Y Li. Efficient illuminant estimation for color constancy using grey pixels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 2254–2263
https://doi.org/10.1109/CVPR.2015.7298838
51 B R Conway, R T Eskew, P R Martin, A Stockman. A tour of contemporary color vision research. Vision Research, 2018, 151: 2–6
https://doi.org/10.1016/j.visres.2018.06.009
52 X Zhang, S Gao, R Li, X Du, C Li, Y Li. A retinal mechanism inspired color constancy model. IEEE Transactions on Image Processing, 2016, 25(3): 1219–1232
https://doi.org/10.1109/TIP.2016.2516953
53 S Gao, Y Li. A retinal mechanism based color constancy model. In: Proceedings of Chinese Conference on Pattern Recognition. 2012, 422–429
https://doi.org/10.1007/978-3-642-33506-8_52
54 G Bi, M Poo. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 1998, 18(24): 10464–10472
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
55 Y Bengio, B Scellier, O Bilaniuk, J Sacramento, W Senn. Feedforward initialization for fast inference of deep generative networks is biologically plausible. 2016, arXiv preprint arXiv:1606.01651
56 B Scellier, Y Bengio. Towards a biologically plausible backprop. Computing Research Repository. 2016, arXiv preprint arXiv: 1602.05179
57 S Boyn, J Grollier, G Lecerf, B Xu, N Locatelli, S Fusil, J Tomas. Learning through ferroelectric domain dynamics in solid-state synapses. Nature Communications, 2017, 8(1): 1–7
https://doi.org/10.1038/ncomms14736
58 H Block, J Knight, F Rosenblatt. Analysis of a four-layer series-coupled perceptron. Reviews of Modern Physics, 1962, 34(1): 135
https://doi.org/10.1103/RevModPhys.34.135
59 K Fukushima. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980, 36(4): 193–202
https://doi.org/10.1007/BF00344251
60 K Fukushima, S Miyake. Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition, 1982, 15(6): 455–469
https://doi.org/10.1016/0031-3203(82)90024-3
61 D Hubel, T Wiesel. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 1962, 160(1): 106–154
https://doi.org/10.1113/jphysiol.1962.sp006837
62 D Hubel, T Wiesel. Receptive fields and functional architecture in two nonstriate visual area (18 and 19) of the cat. The Journal of Neurophysiol, 1965, 28: 229–289
https://doi.org/10.1152/jn.1965.28.2.229
63 K Fukushima, S Miyake, T Ito. Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, 1983, 5: 826–834
https://doi.org/10.1109/TSMC.1983.6313076
64 M Riesenhuber, T Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 1999, 2(11): 1019–1025
https://doi.org/10.1038/14819
65 Y LeCun. F J Huang, L Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004
66 H Wersing, E Korner. Learning optimized features for hierarchical models of invariant recognition. Neural Computation, 2003, 15(7): 1559–1588
https://doi.org/10.1162/089976603321891800
67 D Hubel, T Wiesel. Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 1959, 148(3): 574–591
https://doi.org/10.1113/jphysiol.1959.sp006308
68 J Mutch, D G Lowe. Multiclass object recognition with sparse, localized features. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 11–18
69 X Hu, J Zhang, J Li, B Zhang. Sparsity-regularized HMAX for visual recognition. PLoS ONE, 2014, 9(1): e81813
https://doi.org/10.1371/journal.pone.0081813
70 R Desimone. Face-selective cells in the temporal cortex of monkeys. Journal of Cognitive Neuroscience, 1991, 3(1): 1–8
https://doi.org/10.1162/jocn.1991.3.1.1
71 E T Rolls. Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1992, 335(1273): 11–21
https://doi.org/10.1098/rstb.1992.0002
72 E T Rolls, M J Tovee. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Neurophysiology, 1995, 73(2): 713–726
https://doi.org/10.1152/jn.1995.73.2.713
73 K Tanaka, H Saito, Y Fukada, M Moriya. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 1991, 66(1): 170–189
https://doi.org/10.1152/jn.1991.66.1.170
74 E T Rolls. Brain mechanisms for invariant visual recognition and learning. Behavioural Processes, 1994, 33(1–2): 113–138
https://doi.org/10.1016/0376-6357(94)90062-0
75 E T Rolls. Learning mechanisms in the temporal lobe visual cortex. Behavioural Brain Research, 1995, 66(1–2): 177–185
https://doi.org/10.1016/0166-4328(94)00138-6
76 E T Rolls. A neurophysiological and computational approach to the functions of the temporal lobe cortical visual areas in invariant object recognition. In: Jenkin M, Harris L, eds. Computational and Psychophysical Mechanisms of Visual Coding. Cambridge University Press, 1997, 184–220
77 E T Rolls. Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron, 2000, 27(2): 205–218
https://doi.org/10.1016/S0896-6273(00)00030-1
78 G Wallis, E T Rolls. A model of invariant object recognition in the visual system. Progress in Neurobiology, 1997, 51: 167–194
https://doi.org/10.1016/S0301-0082(96)00054-8
79 E T Rolls, T Milward. A model of invariant object recognition in the visual system: learning rules, activation functions, lateral inhibition, and information-based performance measures. Neural Computation, 2000, 12(11): 2547–2572
https://doi.org/10.1162/089976600300014845
80 Y LeCun, B Boser, J S Denker. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541–551
https://doi.org/10.1162/neco.1989.1.4.541
81 Y LeCun, L Bottou, Y Bengio. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278–2324
https://doi.org/10.1109/5.726791
82 S M Khaligh-Razavi, N Kriegeskorte. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Computational Biology, 2014, 10(11): e1003915
https://doi.org/10.1371/journal.pcbi.1003915
83 C F Cadieu, H Hong, D L Yamins, N Pinto, D Ardila, E A Solomon, N J Majaj, J J DiCarlo. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Computational Biology, 2014, 10(12): e1003963
https://doi.org/10.1371/journal.pcbi.1003963
84 N Kriegeskorte. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual Review of Vision Science, 2015, 1: 417–446
https://doi.org/10.1146/annurev-vision-082114-035447
85 K Kar, J Kubilius, K Schmidt, E B Issa, J J DiCarlo. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience, 2019, 22(6): 974–983
https://doi.org/10.1038/s41593-019-0392-5
86 A Nayebi, D Bear, J Kubilius, K Kar, S Ganguli, D Sussillo, D L Yamins. Task-driven convolutional recurrent models of the visual system. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 5290–5301
87 M H Herzog, A M Clarke. Why vision is not both hierarchical and feedforward. Frontiers in Computational Neuroscience, 2014, 8: 135
https://doi.org/10.3389/fncom.2014.00135
88 P Dayan, L F Abbott, L Abbott. Theoretical neuroscience: computational and mathematical modeling of neural systems. The Quarterly Review of Biology, 2001, 79(1): 113
89 C D Gilbert, W Li. Top-down influences on visual processing. Nature Reviews Neuroscience, 2013, 14(5): 350–363
https://doi.org/10.1038/nrn3476
90 N Markov, P Misery, A Falchier, C Lamy, J Vezoli, R Quilodran, M A Gariel, P Giroud, M Ercsey-Ravasz, L J Pilaz, C Huissoud, P Barone, C Dehay, Z Toroczkai, D C Van Essen, H Kennedy, K Knoblauch. Weight consistency specifies regularities of macaque cortical networks. Cerebral Cortex, 2011, 21(6): 1254–1272
https://doi.org/10.1093/cercor/bhq201
91 S Hochstein, M Ahissar. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron, 2002, 36(5): 791–804
https://doi.org/10.1016/S0896-6273(02)01091-7
92 T Shi, M Liang, X Hu. A reverse hierarchy model for predicting eye fixations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 2822–2829
https://doi.org/10.1109/CVPR.2014.361
93 D Mumford. On the computational architecture of the neocortex. Biological Cybernetics, 1992, 66(3): 241–251
https://doi.org/10.1007/BF00198477
94 T S Lee, D Mumford, R Romero, V Lamme. The role of the primary visual cortex in higher level vision. Vision Research, 1998, 38(15–16): 2429–2454
https://doi.org/10.1016/S0042-6989(97)00464-1
95 R P N Rao, D H Ballard. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 1999, 2(1): 79–87
https://doi.org/10.1038/4580
96 W Lotter, G Kreiman, D Cox. A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception. 2018, arXiv preprint arXiv:1805.10734
97 D George, W Lehrach, K Kansky, D Mely, N Hay, M Lazaro-Gredilla. A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science, 2017, 358(6368): eaag2612
https://doi.org/10.1126/science.aag2612
98 D George, A Lavin, J S Guntupalli, D Mely, N Hay, M Lazaro-Gredilla. Cortical microcircuits from a generative vision model. 2018, arXiv preprint arXiv:1808.01058
https://doi.org/10.1101/379313
99 A Angelucci, M Bijanzadeh, L Nurminen, F Federer, S Merlin, P C Bressloff. Circuits and mechanisms for surround modulation in visual cortex. Annual Review of Neuroscience, 2017, 40(1): 425–451
https://doi.org/10.1146/annurev-neuro-072116-031418
100 M Liang, X Hu. Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3367–3375
101 M Liang, X Hu, B Zhang. Convolutional neural networks with intralayer recurrent connections for scene labeling. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015, 937–945
102 P R Roelfsema, A Holtmaat. Control of synaptic plasticity in deep cortical networks. Nature Reviews Neuroscience, 2018, 19(3): 166
https://doi.org/10.1038/nrn.2018.6
103 B A Richards, T P Lillicrap. Can neocortical feedback alter the sign of plasticity. Nature Reviews Neuroscience, 2018, 19(10): 636
https://doi.org/10.1038/s41583-018-0049-5
104 D Yoo, S Park, J Y Lee, A S Paek, I So Kweon. Attentionnet: aggregating weak directions for accurate object detection. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 2659–2667
https://doi.org/10.1109/ICCV.2015.305
105 Y Fang, Z Ma, Z Zhang. Dynamic multi-task learning with convolutional neural network. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 19–25
https://doi.org/10.24963/ijcai.2017/231
106 W Hao, Z Zhang, H Guan. Integrating both visual and audio cues for enhanced video caption. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018
107 K Simonyan, A Zisserman. Two-stream convolutional networks for action recognition in videos. In: Proceedings of Advances in Neural Information Processing Systems. 2014, 568–576
108 R C O’Reilly, D R Wyatte, J Rohrlich. Deep predictive learning: a comprehensive model of three visual streams. 2017, arXiv preprint arXiv:1709.04654
109 W Hao, Z Zhang, H Guan. CMCGAN: a uniform framework for crossmodal visual-audio mutual generation. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018
110 B Tatler, M Hayhoe, M Land, D Ballard. Eye guidance in natural vision: reinterpreting salience. Journal of Vision, 2011, 11(5): 5
https://doi.org/10.1167/11.5.5
111 D Ognibene, G Baldassare. Ecological active vision: four bioinspired principles to integrate bottom-up and adaptive top-down attention tested with a simple camera-arm robot. IEEE Transactions on Autonomous Mental Development, 2014, 7(1): 3–25
https://doi.org/10.1109/TAMD.2014.2341351
112 H M Yang, X Y Zhang, F Yin, C L Liu. Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 3474–3482
https://doi.org/10.1109/CVPR.2018.00366
113 Y Chen, N Wang, Z Zhang. DarkRank: accelerating deep metric learning via cross sample similarities transfer. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018
114 G I Parisi, R Kemker, J L Part, C Kanan, S Wermter. Continual lifelong learning with neural networks: a review. Neural Networks, 2019, 113: 54–71
https://doi.org/10.1016/j.neunet.2019.01.012
115 A A Rusu, N C Rabinowitz, G Desjardins, H Soyer, J Kirkpatrick, K Kavukcuoglu, R Hadsell. Progressive neural networks. 2016, arXiv preprint arXiv:1606.04671
116 C Fernando, D Banarse, C Blundell, Y Zwols, D Ha, A A Rusu, D Wierstra. Pathnet: evolution channels gradient descent in super neural networks. 2017, arXiv preprint arXiv:1701.08734
117 J Kirkpatrick, R Pascanu, N Rabinowitz, J Veness, G Desjardins, A A Rusu, K Milan, J Quan, T Ramalho, A Grabska-Barwinska, D Hassabis, C Clopath, D Kumaran, R Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 2017, 114(13): 3521–3526
https://doi.org/10.1073/pnas.1611835114
118 B M Lake, R Salakhutdinov, J B Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 2015, 350(6266): 1332–1338
https://doi.org/10.1126/science.aab3050
119 M Atherton. How to write the history of vision: understanding the relationship between berkeley and descartes. In: Levin D M, eds. Sites of Vision: the Discursive Construction of Sight in the History of Philosophy. Cambridge, Massachusetts: The MIT Press, 1999, 139–166
120 J Gibson. The Ecological Approach to Visual Perception. Boston, USA: Houghton Mifflin, 2013
https://doi.org/10.4324/9780203767764
121 S Musall, MT Kaufman, A L Juavinett, S Gluf. A K Churchland. Singletrial neural dynamics are dominated by richly varied movements. Nature Neuroscience, 2019, 22(10): 1677–1686
https://doi.org/10.1038/s41593-019-0502-4
122 C Stringer, M Pachitariu, N Steinmetz, C Bai Reddy, M Carandini, K D Harris. Spontaneous behaviors drive multidimensional, brain-wide population activity. bioRxiv. 2018: 306019
https://doi.org/10.1101/306019
123 S Schröder, N A Steinmetz, M Krumin, M Pachitariu, M Rizzi, L Lagnado, K D Harris, M Carandini. Retinal outputs depend on behavioural state. bioRxiv. 2019: 638049
https://doi.org/10.1101/638049
124 E Ahissar, E Assa. Perception as a closed-loop convergence process. ELife, 2016, 5: e12830
https://doi.org/10.7554/eLife.12830
125 M Rucci, E Ahissar, D Burr. Temporal coding of visual space. Trends in Cognitive Sciences, 2018, 22(10): 883–895
https://doi.org/10.1016/j.tics.2018.07.009
126 M Rucci, J Victor. The unsteady eye: an information-processing stage, not a bug. Trends in Neuroscience, 2015, 38(4): 195–206
https://doi.org/10.1016/j.tins.2015.01.005
127 K J Friston, R A Adams, L Perrinet, M Breakspear. Perceptions as hypotheses: saccades as experiments. Frontiers in Psychology, 2012, 3: 151
https://doi.org/10.3389/fpsyg.2012.00151
128 E Chong, A M Familiar, W M Shim, Reconstructing representations of dynamic visual objects in early visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(5): 1453–1458
https://doi.org/10.1073/pnas.1512144113
129 S J D Lawrence, T van Mourik, P Kok, P Koopmans, D Norris, F de Lange. Laminar organization of working memory signals in human visual cortex. Current Biology, 2018, 28(21): 3435–3440
https://doi.org/10.1016/j.cub.2018.08.043
130 L S Petro, A T Paton, L Muckli. Contextual modulation of primary visual cortex by auditory signals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372(1714): 20160104
https://doi.org/10.1098/rstb.2016.0104
131 M A Williams, C I Baker, H P O De Beeck, W Mok Shim, S Dang, C Triantafyllou, N Kanwisher. Feedback of visual object information to foveal retinotopic cortex. Nature Neuroscience, 2008, 11(12): 1439
https://doi.org/10.1038/nn.2218
132 D Wyatte, T Curran, R O’Reilly. The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded. Journal of Cognitive Neuroscience, 2012, 24(11): 2248–2261
https://doi.org/10.1162/jocn_a_00282
133 P R Roelfsema, F P de Lange. Early visual cortex as a multiscale cognitive blackboard. Annual Review of Vision Science, 2016, 2: 131–151
https://doi.org/10.1146/annurev-vision-111815-114443
134 A Jaegle, V Mehrpour, N Rust. Visual novelty, curiosity, and intrinsic reward in machine learning and the brain. Current Opinion in Neurobiology, 2019, 58: 167–174
https://doi.org/10.1016/j.conb.2019.08.004
135 Y Lu, J Yin, Z Chen, H Gong, Y Liu, L Qian, X Li, R Liu, I M Andolina, W Wang. Revealing detail along the visual hierarchy: neural clustering preserves acuity from V1 to V4. Neuron, 2018, 98(2): 417–428
https://doi.org/10.1016/j.neuron.2018.03.009
136 I I A Groen, E H Silson, C I Baker. Contributions of low-and highlevel properties to neural processing of visual scenes in the human brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372(1714): 20160102
https://doi.org/10.1098/rstb.2016.0102
137 WE Mackey, J Winawer, C E Curtis. Visual field map clusters in human frontoparietal cortex. ELife, 2017, 6: e22974
https://doi.org/10.7554/eLife.22974
[1] Article highlights Download
[1] Weibo YANG, Liangjun KE. An improved fireworks algorithm for the capacitated vehicle routing problem[J]. Front. Comput. Sci., 2019, 13(3): 552-564.
[2] Wei-Neng CHEN, Da-Zhao TAN. Set-based discrete particle swarm optimization and its applications: a survey[J]. Front. Comput. Sci., 2018, 12(2): 203-216.
[3] Geng ZHANG, Yangmin LI, Yuhui SHI. Distributed learning particle swarm optimizer for global optimization of multimodal problems[J]. Front. Comput. Sci., 2018, 12(1): 122-134.
[4] Shaha AL-OTAIBI, Mourad YKHLEF. Hybrid immunizing solution for job recommender system[J]. Front. Comput. Sci., 2017, 11(3): 511-527.
[5] Xian LI,Rui WANG,Zhongzhi LUAN,Yi LIU,Depei QIAN. Coordinating workload balancing and power switching in renewable energy powered data center[J]. Front. Comput. Sci., 2016, 10(3): 574-587.
[6] Zhaoning ZHANG,Dongsheng LI,Kui WU. Large-scale virtual machines provisioning in clouds:challenges and approaches[J]. Front. Comput. Sci., 2016, 10(1): 2-18.
[7] Ahmad ALI,Abdul JALIL,Jianwei NIU,Xiaoke ZHAO,Saima RATHORE,Javed AHMED,Muhammad AKSAM IFTIKHAR. Visual object tracking—classical and contemporary approaches[J]. Front. Comput. Sci., 2016, 10(1): 167-188.
[8] Hui LI,Yun LIU,Shengwu XIONG,Lin WANG. Pedestrian detection algorithm based on video sequences and laser point cloud[J]. Front. Comput. Sci., 2015, 9(3): 402-414.
[9] Wei LI,Yuefei SUI. A sound and complete R-calculi with respect to contraction and minimal change[J]. Front. Comput. Sci., 2014, 8(2): 184-191.
[10] Dongchen JIANG, Wei LI, Jie LUO, Yihua LOU, Zhengzhong LIAO. A decomposition based algorithm for maximal contractions[J]. Front Comput Sci, 2013, 7(6): 801-811.
[11] Xudong ZHU, Zhijing LIU. Human behavior clustering for anomaly detection[J]. Front Comput Sci Chin, 2011, 5(3): 279-289.
[12] Yong FENG, Zhongfu WU, Jiang ZHONG, Chunxiao YE, Kaigui WU, . An enhanced swarm intelligence clustering-based RBFNN classifier and its application in deep Web sources classification[J]. Front. Comput. Sci., 2010, 4(4): 560-570.
[13] Edward TSANG. Forecasting- where computational intelligence meets the stock market[J]. Front Comput Sci Chin, 2009, 3(1): 53-63.
[14] MIZUTANI Tetsuya, IGARASHI Shigeru, SHIO Masayuki, IKEDA Yasuwo. Human factors in continuous time-concerned cooperative systems represented by Σ-labeled calculus[J]. Front. Comput. Sci., 2008, 2(1): 22-28.
[15] WU Wenjun, Wen-Tsun Wu, GAO Xiaoshan. Mathematics mechanization and applications after thirty years[J]. Front. Comput. Sci., 2007, 1(1): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed