Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2018, Vol. 12 Issue (1) : 122-134    https://doi.org/10.1007/s11704-016-5373-1
RESEARCH ARTICLE
Distributed learning particle swarm optimizer for global optimization of multimodal problems
Geng ZHANG1, Yangmin LI2(), Yuhui SHI3
1. Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao, China
2. Industrial and Systems Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
3. Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
 Download: PDF(598 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Particle swarm optimizer (PSO) is an effective tool for solving many optimization problems. However, it may easily get trapped into local optimumwhen solving complex multimodal nonseparable problems. This paper presents a novel algorithm called distributed learning particle swarm optimizer (DLPSO) to solve multimodal nonseparable problems. The strategy for DLPSO is to extract good vector information from local vectors which are distributed around the search space and then to form a new vector which can jump out of local optima and will be optimized further. Experimental studies on a set of test functions show that DLPSO exhibits better performance in solving optimization problems with few interactions between variables than several other peer algorithms.

Keywords particle swarm optimizer (PSO)      orthogonal experimental design (OED)      swarm intelligence     
Corresponding Author(s): Yangmin LI   
Just Accepted Date: 30 September 2016   Online First Date: 30 October 2017    Issue Date: 12 January 2018
 Cite this article:   
Geng ZHANG,Yangmin LI,Yuhui SHI. Distributed learning particle swarm optimizer for global optimization of multimodal problems[J]. Front. Comput. Sci., 2018, 12(1): 122-134.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-5373-1
https://academic.hep.com.cn/fcs/EN/Y2018/V12/I1/122
1 Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium of Micromachine Human Science. 1995, 39–43
https://doi.org/10.1109/MHS.1995.494215
2 Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of IEEE International Conferences on Neural Networks. 1995, 1942–1948
https://doi.org/10.1109/ICNN.1995.488968
3 Liang J J, Qin A K, Suganthan P N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281–295
https://doi.org/10.1109/TEVC.2005.857610
4 Ho S Y, Lin H S, Liauh W H, Ho S J. OPSO: orthogonal particle swarm optimization and its application to task assignment problems. IEEE Transactions on Systems, Man, and Cybernetics, Part A (Systems and Humans), 2008, 38(2): 288–298
https://doi.org/10.1109/TSMCA.2007.914796
5 Zhan Z H, Zhang J, Li Y, Shi Y H. Orthogonal learning particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2011, 15(6): 832–847
https://doi.org/10.1109/TEVC.2010.2052054
6 Zhang G, Li Y M. Parallel and cooperative particle swarm optimizer for multimodal problems. Mathematical Problems in Engineering, 2015, 2015: 743671
7 Ho S Y, Shu L S, Chen J H. Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Transactions on Evolutionary Computation, 2004, 8(6), 522–541
https://doi.org/10.1109/TEVC.2004.835176
8 Van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225–239
https://doi.org/10.1109/TEVC.2004.826069
9 Shi Y H, Eberhart R C. A modified particle swarm optimizer. In: Proceedings of IEEEWorld Congress on Evolutionary Computation. 1998, 69–73
https://doi.org/10.1109/ICEC.1998.699146
10 Shi Y H, Eberhart R C. Parameter selection in particle swarm optimizer. In: Proceedings of the 7th Conference on Evolutionary Programming. 1998, 591–600
11 Suganthan P N. Particle swarm optimizer with neighborhood operator. In: Proceedings of IEEE World Congress on Evolutionary Computation. 1999, 1958–1962
12 Li C H, Yang S X, Nguyen T T. A Self-learning particle swarm optimizer for global optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(3): 627–643
https://doi.org/10.1109/TSMCB.2011.2171946
13 Shi Y H, Eberhart R C. Population diversity of particle swarms. In: Proceedings of IEEE World Congress on Evolutionary Computation. 2008, 1063–1067
14 Shi Y H, Eberhart R C. Monitoring of particle swarm optimization. Frontiers of Computer Science in China, 2009, 3(1): 31–37
https://doi.org/10.1007/s11704-009-0008-4
15 Wu Z J, Zhou J Z. A self-adaptive particle swarm optimization algorithm with individual coefficient adjustment. In: Proceedings of International Conference on Computational Intelligence and Security. 2007, 133–136
https://doi.org/10.1109/CIS.2007.95
16 Parsopoulos K E, Vrahatis M N. UPSO: a unified particle swarm optimization scheme. Lecture Series on Computational Sciences, 2004, 868–873
17 Li X D. Niching without niching parameters: Particle swarm optimization using a ring topology. IEEE Transactions on Evolutionary Computation, 2010, 14(1): 150–169
https://doi.org/10.1109/TEVC.2009.2026270
18 Kennedy J. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of IEEE World Congress on Evolutionary Computation. 1999, 1931–1938
https://doi.org/10.1109/CEC.1999.785509
19 Kennedy J, Mendes R. Population structure and particle swarm performance. In: Proceedings of IEEE World Congress on Evolutionary Computation. 2002, 1671–1676
https://doi.org/10.1109/CEC.2002.1004493
20 Jason J, Middendorf M. A hierarchical particle swarm optimizer andits adaptive variant. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 35(6): 1272–1282
https://doi.org/10.1109/TSMCB.2005.850530
21 Liang J J, Suganthan P N. Dynamic multi-swarm particle optimizer. In: Proceedings of IEEE Congress on Evolutionary Computation. 2005, 124–129
https://doi.org/10.1109/SIS.2005.1501611
22 Mendes R, Kennedy J, Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 204–210
https://doi.org/10.1109/TEVC.2004.826074
23 Peram T, Veeramachaneni K, Mohan C K. Fitness-distance-ratio based particle swarm optimization. In: Proceedings of IEEE Swarm Intelligence Symposium. 2003, 174–181
https://doi.org/10.1109/SIS.2003.1202264
24 Angeline P J. Using selection to improve particle swarm optimization. In: Proceedings of IEEE World Congress on Evolutionary Computation. 1998, 84–89
https://doi.org/10.1109/ICEC.1998.699327
25 Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(2): 997–1006
https://doi.org/10.1109/TSMCB.2003.818557
26 Ling S H, Iu H H C, Chan K Y, Lam H K, Yeung B C W, Leung F H. Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Transactions on Systems Man and Cyberntics Part B, 2008, 38(3): 743–763
https://doi.org/10.1109/TSMCB.2008.921005
27 Ren Z G, Zhang A M, Wen C Y,Feng Z R. A scatter learning particle swarm optimization algorithm for multimodal problems. IEEE Transactions on Cyberntics, 2014, 44(7): 1127–1140
https://doi.org/10.1109/TCYB.2013.2279802
28 Chen X, Li Y M. A modified PSO structure resulting in high exploration ability with convergence guaranteed. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(5): 1271–1289
https://doi.org/10.1109/TSMCB.2007.897922
29 Chen X, Li Y.M. On convergence and parameters selection of an improved particle swarm optimization. International Journal of Control, Automation, and Systems, 2008, 6(4): 559–570
30 Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240–255
https://doi.org/10.1109/TEVC.2004.826071
31 Shen Y X, Wei L N, Zeng C H. Swarm diversity analysis of particle swarm optimization. In: Tan Y, Shi Y H, Buarque F, et al.. eds. Advances in Swarm and Computational Intelligence. Lecture Notes in Compute Science, Vol 9140. Springer, 2015, 99–106
https://doi.org/10.1007/978-3-319-20466-6_11
32 Tang K, Yang P, Yao X. Negatively correlated search. IEEE Journal on Selected Areas in Communications, 2016, 34(3): 540–550
https://doi.org/10.1109/JSAC.2016.2525458
33 Montgomery D C. Design and Analysis of Experiments. 5th ed. New York: Wiley, 2000
34 Ho S Y, Shu L S, Chen J H. Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Transaction on Evolutionary Computation, 2004, 8(6): 522–541
https://doi.org/10.1109/TEVC.2004.835176
35 Liang J J, Suganthan P N, Deb K. Novel composition test functions for numerical global optimization. In: Proceedings of IEEE Swarm Intelligence Symposium. 2005, 68–75
https://doi.org/10.1109/SIS.2005.1501604
36 Salomon R. Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. Biosystems, 1996, 39(3): 263–278
https://doi.org/10.1016/0303-2647(96)01621-8
37 Lee K S, Green Z W. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 2005, 194(36): 3902–3933
https://doi.org/10.1016/j.cma.2004.09.007
38 Sun J Y, Zhang Q F, Tsang E P K. DE/EDA: a new evolutionary algorithm for global optimization. Information Science, 2004, 169(3): 249–262
[1] Wei-Neng CHEN, Da-Zhao TAN. Set-based discrete particle swarm optimization and its applications: a survey[J]. Front. Comput. Sci., 2018, 12(2): 203-216.
[2] Yong FENG, Zhongfu WU, Jiang ZHONG, Chunxiao YE, Kaigui WU, . An enhanced swarm intelligence clustering-based RBFNN classifier and its application in deep Web sources classification[J]. Front. Comput. Sci., 2010, 4(4): 560-570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed