Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2016, Vol. 10 Issue (2) : 246-269    https://doi.org/10.1007/s11704-015-4480-8
RESEARCH ARTICLE
Improving differential evolution with a new selection method of parents for mutation
Yiqiao CAI(),Yonghong CHEN,Tian WANG,Hui TIAN
College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
 Download: PDF(1158 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In differential evolution (DE), the salient feature lies in its mutationmechanismthat distinguishes it from other evolutionary algorithms. Generally, for most of the DE algorithms, the parents for mutation are randomly chosen from the current population. Hence, all vectors of population have the equal chance to be selected as parents without selective pressure at all. In this way, the information of population cannot be fully exploited to guide the search. To alleviate this drawback and improve the performance of DE, we present a new selection method of parents that attempts to choose individuals for mutation by utilizing the population information effectively. The proposed method is referred as fitnessand- position based selection (FPS), which combines the fitness and position information of population simultaneously for selecting parents in mutation of DE. In order to evaluate the effectiveness of FPS, FPS is applied to the original DE algorithms, as well as several DE variants, for numerical optimization. Experimental results on a suite of benchmark functions indicate that FPS is able to enhance the performance of most DE algorithms studied. Compared with other selection methods, FPS is also shown to be more effective to utilize information of population for guiding the search of DE.

Keywords differential evolution      mutation operator      parents selection      population information      numerical optimization     
Corresponding Author(s): Yiqiao CAI   
Just Accepted Date: 22 April 2015   Issue Date: 16 March 2016
 Cite this article:   
Yiqiao CAI,Yonghong CHEN,Tian WANG, et al. Improving differential evolution with a new selection method of parents for mutation[J]. Front. Comput. Sci., 2016, 10(2): 246-269.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4480-8
https://academic.hep.com.cn/fcs/EN/Y2016/V10/I2/246
1 Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341–359
https://doi.org/10.1023/A:1008202821328
2 Das S, Suganthan P N. Differential evolution: a survey of the state-ofthe-art. IEEE Transactions on Evolutionary Computation, 2011, 15(1):4–31
https://doi.org/10.1109/TEVC.2010.2059031
3 Plagianakos V, Tasoulis D, Vrahatis M. A review of major application areas of differential evolution. Advances in Differential Evolution,2008, 143: 197–238
https://doi.org/10.1007/978-3-540-68830-3_8
4 Zhou Y, Wang J. A local search-based multiobjective optimization algorithm for multiobjective vehicle routing problem with time windows. IEEE Systems Journal, 2014, 99: 1–14
5 Wang J, Cai Y. Multiobjective evolutionary algorithm for frequency assignment problem in satellite communications. Soft Computing, 2015,19(5): 1229–1253
https://doi.org/10.1007/s00500-014-1337-2
6 Neri F, Tirronen V. Recent advances in differential evolution: a survey and experimental analysis. Artificial Intelligence Review, 2010, 33(1/2): 61–106
https://doi.org/10.1007/s10462-009-9137-2
7 Qin A, Huang V, Suganthan PN. Differential evolution algorithm withstrategy adaptation for global numerical optimization. IEEE Transactionson Evolutaionry Computation, 2009, 13(2): 398–417
https://doi.org/10.1109/TEVC.2008.927706
8 Brest J, Greiner S, Boskovíc B, Mernik M, Zumer V. Self-adaptingcontrol parameters in differential evolution: a comparative study onnumerical benchmark problems. IEEE Transactions on EvolutionaryComputation, 2006, 10(6): 646–657
https://doi.org/10.1109/TEVC.2006.872133
9 Yu W, Shen M, Chen W, Zhan Z, Gong Y, Lin Y, Liu O, Zhang J. Differential evolution with two-level parameter adaptation. IEEE Transactionson Cybernetics, 2014, 44(7): 2168–2267
10 Tang L, Dong Y, Liu J. Differential evolution with an individualdependent mechanism. IEEE Transactions on Evolutionary Computation, 2014, 99
11 Zhang J, Sanderson A. JADE: adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945–958
https://doi.org/10.1109/TEVC.2009.2014613
12 Cai Y, Wang J. Differential evolution with neighborhood and directioninformation for numerical optimization. IEEE Transactions on Cybernetics, 2013, 43 (6): 2202–2215
https://doi.org/10.1109/TCYB.2013.2245501
13 Das S, Abraham A, Chakraborty U K, Konar K. Differential evolutionusing a neighborhood-based mutation operator. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 526–553
https://doi.org/10.1109/TEVC.2008.2009457
14 Wang J, Liao J, Zhou Y, Cai Y. Differential evolution enhanced with multiobjective sorting based mutation operators. IEEE Transactions on Cybernetics, 2014, 46(12): 2792–2805
https://doi.org/10.1109/TCYB.2014.2316552
15 Wang Y, Cai Z, Zhang Q. Differential evolution with composite trialvector generation strategies and control parameters. IEEE Transactionson Evolutionary Computation, 2011, 15(1): 55–66
https://doi.org/10.1109/TEVC.2010.2087271
16 Sun J, Zhang Q, Tsang EPK. DE/EDA: a new evolutionary algorithm for global optimization. Information Sciences, 2005, 169(3): 249–262
https://doi.org/10.1016/j.ins.2004.06.009
17 Xin B, Chen J, Zhang J, Fang H, Peng Z. Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(5): 744–767
https://doi.org/10.1109/TSMCC.2011.2160941
18 Li Y, Zhan Z, Gong Y, Chen W, Zhang J, Li Y. Differential evolution with an evolution path: a deep evolutionary algorithm. IEEE Transactionson Cybernetics, 2014, 99
19 Dorronsoro B, Bouvry P. Improving classical and decentralized differential evolution with new mutation operator and population topologies. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 67–98
https://doi.org/10.1109/TEVC.2010.2081369
20 Weber M, Tirronen V, Neri F. Scale factor inheritance mechanismin distributed differential evolution. Soft Computing, 2010, 14(11):1187–1207
https://doi.org/10.1007/s00500-009-0510-5
21 Noman N, Iba H. Accelerating differential evolution using an adaptivelocal search. IEEE Transactions on Evolutionary Computation, 2008,12(1): 107–125
https://doi.org/10.1109/TEVC.2007.895272
22 Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos PV, Vrahatis MN. Enhancing differential evolution utilizing proximity based mutation operators. IEEE Transactions on Evolutioanry Computation, 2011,15(1): 99–119
https://doi.org/10.1109/TEVC.2010.2083670
23 Gong W, Cai Z. Differential evolution with ranking-based mutation operators. IEEE Transactions on Cybernetics, 2013, 43(6): 2066–2081
https://doi.org/10.1109/TCYB.2013.2239988
24 Wang H, Rahnamayan S, Hui S, Omran MG. Gaussian barebones differential evolution. IEEE Transactions on Cybernetics, 2013, 43(2):634–647
https://doi.org/10.1109/TSMCB.2012.2213808
25 Cai Y, Wang J, Chen Y, Tian W, Hui T. Adaptive direction informationin differential evolution for numerical optimization. Soft Computing, 2014
26 Mallipeddi R, Suganthan P N, Pan Q, Tasgetiren M. Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing, 2011, 11(2): 1679–1696
https://doi.org/10.1016/j.asoc.2010.04.024
27 Gong W, Cai Z, Ling CX, Li H. Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(2):397–413
https://doi.org/10.1109/TSMCB.2010.2056367
28 García-Martínez C, Rodríguez F, Lozano M. Role differentiation andmalleable mating for differential evolution: an analysis on large-scale optimization. Soft Computing, 2011, 15(11): 2109–2126
https://doi.org/10.1007/s00500-010-0641-8
29 Chen G, Low C, Yang Z. Preserving and exploiting genetic diversityin evolutionary programming algorithms. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 661–673
https://doi.org/10.1109/TEVC.2008.2011742
30 Cai Y, Wang J, Yin J. Learning-enhanced differential evolution for numerical optimization. Soft Computing, 2012, 16(2): 303–330
https://doi.org/10.1007/s00500-011-0744-x
31 Baeck T, Fogel D B, Michalewicz Z. Handbook of evolutionary computation. New York: Taylor & Francis, 1997
https://doi.org/10.1887/0750308958
32 Suganthan P N, Hansen N, Liang J, Deb K, Chen Y, Auger A, Tiwari S. Problem definitions and evaluation criteria for the CEC 2005 specialsession on real-parameter optimization. KanGAL Report Number2005005. 2005
33 Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition based differential evolution. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64–79
https://doi.org/10.1109/TEVC.2007.894200
34 Wilcoxon F. Individual comparisons by ranking methods. Biometrics, 1945, 1(6): 80–83
https://doi.org/10.2307/3001968
35 García S,Fernández A, Luengo J, Herrera F. A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Computing, 2009, 13(10): 959–977
https://doi.org/10.1007/s00500-008-0392-y
36 Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 2011, 1(1): 3–18
https://doi.org/10.1016/j.swevo.2011.02.002
37 Alcalá-Fdez J, Sánchez L, García S. KEEL: A software tool to assess evolutionary algorithms to data mining problems. Soft Computing, 2009, 13(3): 307–318
https://doi.org/10.1007/s00500-008-0323-y
38 Das S, Suganthan P N. Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on realworld optimization problems. Technical Report. 2010
39 Chow C K, Yuen S Y. An evolutionary algorithm that makes decisionbased on the entire previous search history. IEEE Transactions on Evolutionary Computation, 2011, 15(6): 741–769
https://doi.org/10.1109/TEVC.2010.2040180
40 Zhou X, Wu Z, Wang H, Rahnamayan S. Enhancing differential evolution with role assignment scheme. Soft Computing, 2013, 18(11): 2209–2225
https://doi.org/10.1007/s00500-013-1195-3
41 Guo WZ, Liu G G, Chen G L, Peng S J. A hybrid multi-objective PSOalgorithm with local search strategy for VLSI partitioning. Frontiers of Computer Science, 2014, 8(2): 203–216
https://doi.org/10.1007/s11704-014-3008-y
42 Zhang Y, Gong D W. Generating test data for both paths coverage and faults detection using genetic algorithms: multi-path case. Frontiers of Computer Science, 2014, 8(5): 726–740
https://doi.org/10.1007/s11704-014-3372-7
[1] FCS-0246-14480-YQC_suppl_1 Download
[1] Wenting ZHAO, Lijin WANG, Yilong YIN, Bingqing WANG, Yuchun TANG. Sequential quadratic programming enhanced backtracking search algorithm[J]. Front. Comput. Sci., 2018, 12(2): 316-330.
[2] Yong WANG, Zhi-Zhong LIU, Jianbin LI, Han-Xiong LI, Jiahai WANG. On the selection of solutions for mutation in differential evolution[J]. Front. Comput. Sci., 2018, 12(2): 297-315.
[3] Yu HAN,Guozhu JIA. Optimizing product manufacturability in 3D printing[J]. Front. Comput. Sci., 2017, 11(2): 347-357.
[4] Xiaojun BI, Jing XIAO. Classification-based self-adaptive differential evolution and its application in multi-lateral multi-issue negotiation[J]. Front Comput Sci, 2012, 6(4): 442-461.
[5] Maryjane TREMAYNE, Samantha Y. CHONG, Duncan BELL. Optimisation of algorithm control parameters in cultural differential evolution applied to molecular crystallography[J]. Front Comput Sci Chin, 2009, 3(1): 101-108.
[6] Yong WANG, Zixing CAI. A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems[J]. Front Comput Sci Chin, 2009, 3(1): 38-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed