Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2018, Vol. 12 Issue (2) : 297-315    https://doi.org/10.1007/s11704-016-5353-5
RESEARCH ARTICLE
On the selection of solutions for mutation in differential evolution
Yong WANG1,2(), Zhi-Zhong LIU1, Jianbin LI3, Han-Xiong LI4,5, Jiahai WANG6
1. School of Information Science and Engineering, Central South University, Changsha 410083, China
2. School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK
3. Institute of Information Security and Big Data, Central South University, Changsha 410083, China
4. Department of Systems Engineering and EngineeringManagement, City University of Hong Kong, Hong Kong, China
5. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
6. School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
 Download: PDF(1062 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Differential evolution (DE) is a kind of evolutionary algorithms, which is suitable for solving complex optimization problems. Mutation is a crucial step in DE that generates new solutions from old ones. It was argued and has been commonly adopted in DE that the solutions selected for mutation should have mutually different indices. This restrained condition, however, has not been verified either theoretically or empirically yet. In this paper, we empirically investigate the selection of solutions for mutation in DE. From the observation of the extensive experiments, we suggest that the restrained condition could be relaxed for some classical DE versions as well as some advanced DE variants. Moreover, relaxing the restrained condition may also be useful in designing better future DE algorithms.

Keywords differential evolution      mutation      the selection of solutions for mutation      evolutionary algorithms     
Corresponding Author(s): Yong WANG   
Just Accepted Date: 19 July 2016   Online First Date: 29 June 2017    Issue Date: 23 March 2018
 Cite this article:   
Yong WANG,Zhi-Zhong LIU,Jianbin LI, et al. On the selection of solutions for mutation in differential evolution[J]. Front. Comput. Sci., 2018, 12(2): 297-315.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-5353-5
https://academic.hep.com.cn/fcs/EN/Y2018/V12/I2/297
1 Storn R, Price K. Differential evolution — a simple and efficient adaptive scheme for global optimization over continuous spaces. Berkeley, CA: International Computer Science Institute. Technical Report TR- 95-012. 1995
2 Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341–359
https://doi.org/10.1023/A:1008202821328
3 Fan H, Lampinen J. A trigonometric mutation operation to differential evolution. Journal of Global Optimization, 2003, 27(1): 105–129
https://doi.org/10.1023/A:1024653025686
4 Zhang J, Sanderson A. JADE: adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945–958
https://doi.org/10.1109/TEVC.2009.2014613
5 Das S, Abraham A. Differential evolution using a neighborhood-based mutation operator. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 526–553
https://doi.org/10.1109/TEVC.2008.2009457
6 Wang Y, Cai Z X, Zhang Q F. Enhancing the search ability of differential evolution through orthogonal crossover. Information Sciences, 2012, 185(1): 153–177
https://doi.org/10.1016/j.ins.2011.09.001
7 Guo S M, Yang C C. Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Transactions on Evolutionary Computation, 2015, 19(1): 31–49
https://doi.org/10.1109/TEVC.2013.2297160
8 Wang Y, Li H X, Huang T W, Li L. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Applied Soft Computing, 2014, 18: 232–247
https://doi.org/10.1016/j.asoc.2014.01.038
9 Liu J H, Lampinen J. A fuzzy adaptive differential evolution algorithm. Soft Computing, 2005, 9(6): 448–462
https://doi.org/10.1007/s00500-004-0363-x
10 Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646–657
https://doi.org/10.1109/TEVC.2006.872133
11 Noman N, Iba H. Accelerating differential evolution using an adaptive local search. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 107–125
https://doi.org/10.1109/TEVC.2007.895272
12 Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64–79
https://doi.org/10.1109/TEVC.2007.894200
13 Sun J Y, Zhang Q F, Tsang E P K. DE/EDA: a new evolutionary algorithm for global optimization. Information Sciences, 2003, 169(3–4): 249–262
14 Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398–417
https://doi.org/10.1109/TEVC.2008.927706
15 Mallipeddi R, Suganthan P N, Pan Q, Tasgetiren M. Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing, 2011, 11(2): 1679–1696
https://doi.org/10.1016/j.asoc.2010.04.024
16 Wang Y, Cai Z X, Zhang Q F. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 55–66
https://doi.org/10.1109/TEVC.2010.2087271
17 Das S, Suganthan P N. Differential evolution: a survey of the state-ofthe- art. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4–31
https://doi.org/10.1109/TEVC.2010.2059031
18 Wang Y, Wang B C, Li H X, Yen G G. Incorporating objective function information into the feasibility rule for constrained evolutionary optimization. IEEE Transactions on Cybernetics, 2016, doi: 10.1109/TCYB.2015.2493239
https://doi.org/10.1109/TCYB.2015.2493239
19 Wang Y, Li H X, Yen G G, Song W. MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Transactions on Cybernetics, 2015, 45(4): 830–843
https://doi.org/10.1109/TCYB.2014.2337117
20 Tvrdík J. Modifications of differential evolution with composite trial vector generation strategies. In: Snášel V, Abraham A, Corchado E S, eds. Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, Vol 188. Berlin: Springer, 2013, 113–122
https://doi.org/10.1007/978-3-642-32922-7_12
21 Price K, Storn R, Lampinen J. Differential Evolution-A Practical Approach to Global Optimization. Berlin: Springer-Verlag, 2005
22 Liu H, Huang H, Liu S S. Explore influence of differential operator in DE mutation with unrestrained method to generate mutant vector. In: Rutkowski L, Korytkowski M, Scherer R, et al.. . Swarm and Evolutionary Computation. Lecture Notes in Computer Science, Vol 7269. Berlin: Springer, 2012, 292–300
https://doi.org/10.1007/978-3-642-29353-5_34
23 Suganthan P N, Hansen N, Liang J, Deb K, Chen Y P, Auger A, Tiwari S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report 2005005. 2005
24 Liang J J, Qu B Y, Suganthan P N, Hernández-Diaz A. Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization. Zhengzhou: Zhengzhou University. Technical Report. 2013
25 Tanabe R, Fukunaga A. Improving the search performance of shade using linear population size reduction. In: Proceeding of IEEE Congress on Evolutionary Computation. 2014, 1658–1665
https://doi.org/10.1109/cec.2014.6900380
26 Yang Z Y, Tang K, Yao X. Large scale evolutionary optimization using cooperative coevolution. Information Sciences, 2008, 87(15): 2985–2999
https://doi.org/10.1016/j.ins.2008.02.017
[1] Shuaiqiang WANG, Yilong YIN. Polygene-based evolutionary algorithms with frequent pattern mining[J]. Front. Comput. Sci., 2018, 12(5): 950-965.
[2] Yu HAN,Guozhu JIA. Optimizing product manufacturability in 3D printing[J]. Front. Comput. Sci., 2017, 11(2): 347-357.
[3] Yiqiao CAI,Yonghong CHEN,Tian WANG,Hui TIAN. Improving differential evolution with a new selection method of parents for mutation[J]. Front. Comput. Sci., 2016, 10(2): 246-269.
[4] Xiaojun BI, Jing XIAO. Classification-based self-adaptive differential evolution and its application in multi-lateral multi-issue negotiation[J]. Front Comput Sci, 2012, 6(4): 442-461.
[5] Maryjane TREMAYNE, Samantha Y. CHONG, Duncan BELL. Optimisation of algorithm control parameters in cultural differential evolution applied to molecular crystallography[J]. Front Comput Sci Chin, 2009, 3(1): 101-108.
[6] Yong WANG, Zixing CAI. A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems[J]. Front Comput Sci Chin, 2009, 3(1): 38-52.
[7] Carlos A. COELLO COELLO. Evolutionary multi-objective optimization:some current research trends and topics that remain to be explored[J]. Front Comput Sci Chin, 2009, 3(1): 18-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed