Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci Chin    2009, Vol. 3 Issue (1) : 18-30    https://doi.org/10.1007/s11704-009-0005-7
REVIEW ARTICLE
Evolutionary multi-objective optimization:some current research trends and topics that remain to be explored
Carlos A. COELLO COELLO1,2()
1. Evolutionary Computation Group, Departamento de Computcaión, Ginvestav-IPN, México D. F. 07300, México; 2. UMI-LAFMIA 3175 CNRS, México D. F. 07300, México
 Download: PDF(605 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper provides a short review of some of the main topics in which the current research in evolutionary multi-objective optimization is being focused. The topics discussed include new algorithms, efficiency, relaxed forms of dominance, scalability, and alternative metaheuristics. This discussion motivates some further topics which, from the author’s perspective, constitute good potential areas for future research, namely, constraint-handling techniques, incorporation of user’s preferences and parameter control. This information is expected to be useful for those interested in pursuing research in this area.

Keywords evolutionary multi-objective optimization      evolutionary algorithms      multi-objective optimization      metaheuristics     
Corresponding Author(s): COELLO COELLO Carlos A.,Email:ccoello@cs.cinvestav.mx   
Issue Date: 05 March 2009
 Cite this article:   
Carlos A. COELLO COELLO. Evolutionary multi-objective optimization:some current research trends and topics that remain to be explored[J]. Front Comput Sci Chin, 2009, 3(1): 18-30.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0005-7
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I1/18
1 Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading: Addison-Wesley Publishing Company, 1989
2 Eiben A E, Smith J E. Introduction to Evolutionary Computing. Berlin: Springer, 2003
3 Coello Coello C A, Lamont G B, Van Veldhuizen D A. 2nd ed. Evolutionary Algorithms for Solving Multi-Objective Problems. New York: Springer, 2007
4 Deb K. Multi-Objective Optimization using Evolutionary Algorithms. Chichester: John Wiley & Sons, 2001
5 Coello Coello C A. An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys , 2000, 32(2): 109-143
doi: 10.1145/358923.358929
6 Miettinen K M. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers, 1999
7 Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. . Nashville: Vanderbilt University, 1984
8 Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the First International Conference on Genetic Algorithms and their Applications , 1985, 93-100
9 Coello Coello C A. Evolutionary multiobjective optimization: a historical view of the field. IEEE Computational Intelligence Magazine , 2006, 1(1): 28-36
doi: 10.1109/MCI.2006.1597059
10 Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest S, ed. Proceedings of the Fifth International Conference on Genetic Algorithms . San Fransisco: Morgan Kaufmann Publishers, 1993, 416-423
11 Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence . Piscataway: IEEE Service Center, 1994, 1: 82-87
12 Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation , 1994, 2(3): 221-248
doi: 10.1162/evco.1994.2.3.221
13 Husbands P. Distributed coevolutionary genetic algorithms for multicriteria and multi-constraint optimisation. In: Fogarty T C, ed. Evolutionary Computing. Springer-Verlag, LNCS , 1994, 865: 150-165
14 Osyczka A, Kundu S. A genetic algorithm approach to multicriteria network optimization problems. In: Proceedings of the 20th International Conference on Computers and Industrial Engineering , 1996, 329-332
15 Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation , 1999, 3(4): 257-271
doi: 10.1109/4235.797969
16 Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation , 2000, 8(2): 149-172
doi: 10.1162/106365600568167
17 Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. In: Giannakoglou K, Tsahalis D, Periaux J, Papailou P, Fogarty T, eds. Proceedings of EUROGEN 2001-Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems , 2002, 95-100
18 Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation , 2002, 6(2): 182-197
doi: 10.1109/4235.996017
19 Babbar M, Lakshmikantha A, Goldberg D E. A modified NSGA-II to solve noisy multiobjective problems. In: Foster J, ed. Proceedings of 2003 Genetic and Evolutionary Computation Conference. Late-Breaking Papers . Chicago: AAAI, 2003, 21-27
20 Jozefowiez N, Semet F, Talbi E G. Enhancements of NSGA II and its application to the vehicle routing problem with route balancing. In: Talbi E G, Liardet P, Collet P, Lutton E, Schoenauer M, eds. Proceedings of Artificial Evolution, 7th International Conference, Evolution Artificielle, EA 2005 . Lille: Springer, LNCS, 2005, 3871: 131-142
21 Nojima Y, Narukawa K, Kaige S, Ishibuchi H. Effects of removing overlapping solutions on the performance of the NSGA-II algorithm. In: Coello Coello C A, Hernández-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005) . Guanajuato: Springer, LNCS, 2005, 3410: 341-354
22 K?oppen M, Yoshida K. Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Crterion Optimization, 4th International Conference (EMO 2007) . Matshushima: Springer, LNCS, 2007, 4403: 727-741
23 Goldberg D E, Richardson J. Genetic algorithm with sharing for multimodal function optimization. In: Grefenstette J J, ed. Proceedings of Genetic Algorithms and Their Applications, the Second International Conference on Genetic Algorithms . Hillsdale: Lawrence Erlbaum, 1987, 41-49
24 Deb K, Goldberg D E. An investigation of niche and species formation in genetic function optimization. In: Schaffer J D, ed. Proceedings of the Third International Conference on Genetic Algorithms . San Mateo: Morgan Kaufmann Publishers, 1989, 42-50
25 Knowles J, Corne D. Properties of and adaptive archiving algorithm for storing nondominated vectors. IEEE Transactions on Evolutionary Computation , 2003, 7(2): 100-116
doi: 10.1109/TEVC.2003.810755
26 Cui X X, Li M, Fang T J. Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles. In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001) . Piscataway: IEEE Service Center, 2001, 2: 1316-1321
27 Farhang-Mehr A, Azarm S. Diversity assessment of Pareto optimal solution sets: an entropy approach. In: Proceedings of Congress on Evolutionary Computation (CEC’2002) . Piscataway: IEEE Service Center, 2002, 1: 723-728
28 Farhang-Mehr A, Azarm S. Entropy-based multi-objective genetic algorithm for design optimization. Structural and Multidisciplinary Optimization , 2002, 24(25): 351-361
doi: 10.1007/s00158-002-0247-6
29 Zitzler E, Künzli S. Indicator-based selection in multiobjective search. In: Yao X, , eds. Parallel Problem: Solving from Nature – PPSN VIII . Birmingham: Springer-Verlag, LNCS, 2004, 3242: 832-842
30 Zitzler E, Thiele L, Laumanns M, Fonseca C M, Da Fonseca V G. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation , 2003, 7(2): 117-132
doi: 10.1109/TEVC.2003.810758
31 Zitzler E, Thiele L, Bader J. SPAM: set preference alogrithm for multiobjective optimization. In: Rudolph G, Jansen T, Lucas S, Poloni C, Beume N, eds. Parallel Problem Solving from Nature–PPSN X . Dortmund: Springer, LNCS, 2008, 5199: 847-858
32 Emmerich M, Beume N, Naujoks B. An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello C A, Hernández-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005) . Guanajuato: Springer, LNCS, 2005, 3410: 62-76
33 Beume N, Naujoks B, Emmerich M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research , 2007, 181(3): 1653-1669
doi: 10.1016/j.ejor.2006.08.008
34 Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms—a comparative study. In: Eiben A E, ed. Parallel Problem Solving from Nature V . Amsterdam: Springer–Verlag, 1998, 292-301
doi: 10.1007/BFb0056872
35 Zitzler E. Evolutionary algorithms for multiobjective optimization: Methods and application. . Zurich: Swiss Federal Institute of Technology (ETH), 1999
36 Igel C, Hansen N, Roth S. Covariance matrix adaptation for multiobjective optimization. Evolutionary Computation , 2007, 15(1): 1-28
doi: 10.1162/evco.2007.15.1.1
37 Igel C, Suttorp T, Hansen N. Steady-state selection and efficient covariance matrix update in the multi-objective CM-ES. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of 4th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2007) . Matshushima: Springer, LNCS, 2007, 4403: 171-185
38 Sefrioui M, Periaux J. Nash genetic algorithms: examples and applications. In: Proceeding of 2000 Congress on Evolutionary Computation . San Diego: IEEE Service Center, 2000, 1: 509-516
39 Landa-Becerra R, Coello Coello C A. Solving hard multiobjective optimization problems using ?-constraint with cultured differential evolution. In: Runarsson T P, Beyer H G, Burke E, Merelo-Gurervós J J, Whitley D L, Yao X, eds. Proceedings of 9th International Conference on Parallel Problem Solving from Nature-PPSN IX . Reykjavk: Springer, LNCS, 2006, 4193: 543-552
40 Nebro A J, Durillo J J, Luna F, Dorronsoro B, Alba E. A cellular genetic algorithm for multiobjective optimization. In: Pelta D A, Krasnogor N, eds. Proceedings of the Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO 2006) , 2006, 25-36
41 Nebro A J, Durillo J J, Luna F, Dorronsoro B, Alba E. Design issues in a multiobjective cellular genetic algorithm. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of 4th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2007) . Matshushima: Springer, LNCS, 2007, 4403: 126-140
42 Coello Coello C A, Toscano-Pulido G.Multiobjective optimization using a micro-genetic algorithm. In: Spector L, Good-man E D, Wu A, Langdon W B, Voigt H M, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon M H, Burke E, eds. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001) . San Francisco: Morgan Kaufmann Publishers, 2001, 274-282
43 Toscano-Pulido G, Coello Coello C A. The micro genetic algorithm 2: towards online adaptation in evolutionary multiobjective optimization. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L , eds. Proceedings of Second International Conference on Evolutionary Multi- Criterion Optimization (EMO 2003) . Faro: Springer, LNCS, 2003, 2632: 252-266
44 Jensen M T. Reducing the run-time complexity of multionbjective EAs: the NSGA-II and other algorithms. IEEE Transactions on Evolutionary Computation , 2003, 7(5): 503-515
doi: 10.1109/TEVC.2003.817234
45 Kung H T, Luccio F, Preparata F P. On finding the maxima of a set of vectors. Journal of the Association for Computing Machinery , 1975, 22(4): 469-476
46 Rohling G. Multiple objective evolutionary algorithms for independent, computationally expensive objective evaluations. . Atlanta: Georgia Institute of Technology, 2004
47 Yukish MA. Algorithms to identify Pareto points inmulti-dimensional data sets. . Philadelphia: Pennsylvania State University, 2004
48 Krishnakumar K. Micro-genetic algorithms for stationary and nonstationary function optimization. In: Proceedings of SPIE: Intelligent Control and Adaptive Systems , 1989, 1196: 289-296
49 Won K S, Ray T. Performance of Kriging and Cokriging based surrogate models within the unified framework for surrogate assisted optimization. In: Proceedings of 2004 Congress on Evolutionary Computation (CEC’2004) . Portland: IEEE Service Center, 2004, 2: 1577-1585
50 Karakasis M K, Giannakoglou K C. Metamodel-assisted multiobjective evolutionary optimization. In: Schilling R, Haase W, Periaux J, Baier H, Bugeda G, eds. Proceedings of EUROGEN 2005- Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems , 2005
51 Voutchkov I, Kene A J. Multiobjective optimization using surrogates. In: Parmee I C, ed. Proceedings of the Seventh International Conference on Adaptive Computing in Design and Manufacture 2006 . Bristol: The institute for People-centred Computation, 2006, 167-175
52 Knowles J. ParEGO: A hybrid algorithm with on-line landscape approximation for exersive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation , 2006, 10(1): 50-66
doi: 10.1109/TEVC.2005.851274
53 Ray T, Smith W. A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design. Engineering Optimization , 2006, 38(8): 997-1011
doi: 10.1080/03052150600882538
54 Reynolds R G, Michalewiez Z, Cavaretta M. Using cultural algorithms for constraint handing in GENOCOP. In: McDonnell J R, Reynolds R G, Fogel D B, eds. Proceedings of the Fourth Annual Conference on Evolutionary Programming . Cambridge: MIT Press, 1995, 298-305
55 Coello Coello C A, Landa-Becerra R. Evolutionary multionbjective optimization using a cultural algorithm. In: Proceedings of 2003 IEEE Swarm Intelligence Symposium . Indianapolis: IEEE Service Center, 2003
56 Jin Y C. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing , 2005, 9(1): 3-12
doi: 10.1007/s00500-003-0328-5
57 Smith R E, Dike B A, Stegmann S A. Fitness inheritance in genetic algorithms. In: Proceedings of the 1995 ACM Symposium on Applied Computing . Nashville: ACM Press, 1995, 345-350
58 Bui L T, Abbass H A, Essam D. Fitness inheritance for noisy evolutionary multi-objective optimization. In: Beyer H G, , eds. Proceedings of 2005 Genetic and Evolutionary Computation Conference (GECCO’2005) . New York: ACM Press, 2005, 1: 779-785
59 Reyes-Sierra M, Coello Coeello C A. A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization. In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’2005) . Edinburgh: IEEE Service Center, 2005, 1: 65-72
60 Landa-Becerra R, Santana-Quintero L V, Coello Coello C A. Knowledge incorporation in multi-objective evolutionary algorithms. In: Ghosh A, Dehuri S, Ghosh S, eds. Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases . Berlin: Springer, 2008, 23-46
doi: 10.1007/978-3-540-77467-9_2
61 Hernández-Díaz A G, Santana-Quintero L V, Coello Coello C A, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough sets theory. In: Keijzer M, , eds. Proceedings of 2006 Genetic and Evolutionary Computation Conference (GECCO’2006) . Seattle: ACM Press, 2006, 1: 675-682
62 Santana-Quintero L V, Ramírez N, Coello Coello C A. A multiobjective particle swarm optimizer hybridized with scatter search. In: Gelbukh A, Reyes-Garcia C A, eds. Proceedings of MICAI 2006: Advances in Artificial Intelligence, 5th Mexican International Conference on Artificial Intelligence . Apizaco: Springer, 2006, LNAI, 4293: 294-304
63 Wanner E F, Guimaráes F G, Takahashi R H C, Fleming P J. Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria. Evolutionary Computation , 2008, 16(2): 185-224
doi: 10.1162/evco.2008.16.2.185
64 Adra S F, Griffin I, Fleming P J. An informed convergence accelerator for evolutionary multiobjective optimiser. In: Thierens D, ed. Proceedings of 2007 Genetic and Evolutionary Computation Conference (GECCO’2007) . London: ACM Press, 2007, 1: 734-740
65 Adra S F. Improving convergence, diversity and pertinency in multiobjective optimisation. . Sheffield: The University of Sheffield, 2007
66 Kokolo I, Hajime K, Shigenobu K. Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001) . Piscataway: IEEE Service Center, 2001, 2: 957-962
67 Laumanns M, Thiele L, Deb K, Zitzler E. Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation , 2002, 10(3): 263-282
doi: 10.1162/106365602760234108
68 Villalobos-Arias M A, Toscano Pulido G, Coello Coello C A. A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer. In: Proceedings of 2005 IEEE Swarm Intelligence Symposium (SIS’05) . IEEE Press, 2005, 22-29
69 Hernández-Díaz A G, Santana-Quintero L V, Coello Coello C A, Molina J. Pareto-adaptive ?-dominance. Evolutionary Computation , 2007, 15(4): 493-517
doi: 10.1162/evco.2007.15.4.493
70 Deb K, Mohan M, Mishra S. Towards a quick computation of wellspread Pareto-optimal solutions. In: Fonseca CM, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Second International Conference (EMO 2003) . Faro: Springer, LNCS, 2003, 2632: 222-236
71 Mostaghim S, Teich J. The role of ?-dominance in multi objective particle swarm optimization methods. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC’2003) . Canberra: IEEE Press, 2003, 3: 1764-1771
72 Deb K, Mohan M, Mishra S. Evaluating the ?-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation , 2005, 13(4): 501-525
doi: 10.1162/106365605774666895
73 Santana-Quintero L V, Coello Coello C A. An algorithm based on differential evolution for multi-objective problems. International Journal of Computational Intelligence Research , 2005, 1(2): 151-169
74 Khare V, Yao X, Deb K. Performance scaling of multi-objective evolutionary algorithms. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Second International Conference on Evolutionary Multi-Criterion Optimization (EMO 2003) . Faro: Springer, LNCS, 2003, 2632: 376-390
75 Hughes E J. Evolutionary many-objective optimisation: many once or one many? In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’2005) . Edinburgh: IEEE Service Center, 2005, 1: 222-227
76 Wagner T, Beume N, Naujoks B. Pareto-, aggregation-, and indicatorbased methods in many-objective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007) . Matshushima: Springer, LNCS, 2007, 4403: 742-756
77 Farina M, Amato P. On the optimal solution definition for manycriteria optimization problems. In: Proceedings of the NAFIPSFLINT International Conference’2002, Piscataway: IEEE Service Center , 2002, 233-238
78 Knowles J, Corne D. Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007) . Matshushima: Springer, LNCS, 2007, 4403: 757-771
79 Purshouse R C. On the evolutionary optimisation of many objectives. . Sheffield: The University of Sheffield, 2003
80 Purshouse R C, Fleming P J. On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Algorithms , 2007, 11(6): 770-784
doi: 10.1109/TEVC.2007.910138
81 Di Pierro F. Many-objective evolutionary algorithms and applications to water resources engineering. . Exeter: University of Exeter, 2006
82 Di Pierro F, Khu S T, Savi? D A. An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Transactions on Evolutionary Computation , 2007, 11(1): 17-45
doi: 10.1109/TEVC.2006.876362
83 Farina M, Amato P. A fuzzy definition of “optimality” for manycriteria optimization problems. IEEE Transactions on Systems, Man, and Cybernetics Part A—Systems and Humans , 2004, 34(3): 315-326
doi: 10.1109/TSMCA.2004.824873
84 Sülflow A, Drechsler N, Drechsler R. Robust multi-objective optimization in high dimensional spaces. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007) . Matshushima: Springer, LNCS, 2007, 4403: 715-726
85 Saxena D K, Deb K. Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007) . Matshushima: Springer, LNCS, 2007, 4403: 772-787
86 Brockhoff D, Zitzler E. Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: Runarsson T P, Beyer H G, Burke E, Merelo-Guervós J J, Whitley L D, Yao X, eds. Proceedings of Parallel Problem Solving from Nature- PPSN IX, 9th International Conference . Reykjavik: Springer, LNCS, 2006, 4193: 533-542
87 Jaimes A L, Coello Coello C A, Chakraborty D. Objective reduction using a feature selection technique. In: Proceedings of 2008 Genetic and Evolutionary Computation Conference (GECCO’2008) . Atlanta: ACM Press, 2008, 674-680
88 Durillo J J, Nebro A J, Coello Coello C A, Luna F, Alba E. A comparative study of the effect of parameter scalability in multi-objective metaheuristics. In: Proceedings of 2008 Congress on Evolutionary Computation (CEC’2008) . Hong Kong: IEEE Service Center, 2008, 1893-1900
89 Nebro A J, Luna F, Alba E, Dorronsoro B, Durillo J J, Beham A. AbYSS: adapting scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation , 2008, 12(4): 439-457
doi: 10.1109/TEVC.2007.913109
90 Corne D, Dorigo M, Glover F, eds. New Ideas in Optimization. London: McGraw-Hill, 1999
91 De Castro L N, Timmis J. An Introduction to Artificial Immune Systems: A New Computational Intelligence Paradigm. London: Springer, 2002
92 Dasgupta D, ed. Artificial Immune Systems and Their Applications. Berlin: Springer-Verlag, 1999
93 De Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation , 2002, 6(3): 239-251
doi: 10.1109/TEVC.2002.1011539
94 Luh G C, Chued C H, Liu W W. MOIA: multi-objective immune algorithm. Engineering Optimization , 2003, 35(2): 143-164
doi: 10.1080/0305215031000091578
95 Luh G C, Chued C H. Multi-objective optimal design of truss structure with immune algorithm. Computers and Structures , 2004, 82: 829-844
doi: 10.1016/j.compstruc.2004.03.003
96 Coello Coello C A, Cruz-Cortés N. Solving multionbjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines , 2005, 6(2): 163-190
doi: 10.1007/s10710-005-6164-x
97 Freschi F, Repetto M. VIS: an artificial immune network for multiobjective optimization. Engineering Optimization , 2006, 38(8): 975-996
doi: 10.1080/03052150600880706
98 Campelo F, Guimaráes F G, Igarashi H. Overview of artificial immune systems for multi-objective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007) . Matshushima: Springer, LNCS, 2007, 4403: 937-951
99 Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei A H. A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness. Information Sciences , 2007, 177(22): 5072-5090
doi: 10.1016/j.ins.2007.06.001
100 Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei A H. Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. International Journal of Advanced Manufacturing Technology , 2008, 36(9-10): 969-981
doi: 10.1007/s00170-006-0906-7
101 Zhang X R, Lu B, Gou S, Jiao L. Immune multiobjective optimization algorithm using unsupervised feature selection. In Rothlauf F, , eds. Applications of Evolutionary Computing . EvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC. Budapest: Springers, LNCS, 2006, 3907: 484-494
102 Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies. In: Varela F J, Bourgine P, eds. Proceedings of the First European Conference on Artificial Life . Cambridge: MIT Press, 1992, 134-142
103 Dorigo M, Di Caro G. The ant colony optimization meta-heuristic. In: Corne D, Dorigo M, Glover F, eds. New Ideas in Optimization . London: McGraw-Hill, 1999, 11-32
104 Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence: From Natural to Artificial Systems. New York: Oxford University Press, 1999
105 Dorigo M, Stützle T. Ant Colony Optimization. Cambridge: The MIT Press, 2004
106 Mariano-Romero C E, Morales-Manzanares E. MOAQ an ant-Q algorithm for multiple objective optimization problems. In: Banzhaf W, Daida J, Eiben A E, Garzon M H, Honavar V, Jakiela M, Smith R E, eds. Proceedings of Genetic and Evolutionary Computing Conference (GECCO 99) . San Francisco: Morgan Kaufmann, 1999, 1: 894-901
107 Iredi S, Merkle D, Middendorf M. Bi-criterion optimization with multi colony ant algorithms. In: Zitzler E, Deb K, Thiele L, Coello Coello C A, Corne D, eds. Proceedings of First International Conference on Evolutionary Multi-Criterion Optimization . Berlin: Springer-Verlag, LNCS, 2001, 1993: 359-372
108 Barán B, Schaerer M. A multiobjective ant colony system for vehicle routing problem with time windows. In: Proceedings of the 21st IASTED International Conference on Applied Informatics . Innsbruck: IASTED, 2003, 97-102
109 Guntsch M, Middendorf M. Solving multi-criteria optimization problems with population-based ACO. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Second International Conference (EMO 2003) . Faro: Springer, LNCS, 2003, 2632: 464-478
110 Doerner K, Gutjahr W J, Hartl R F, Strauss C, Stummer C. Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research , 2004, 131(1-4): 79-99
doi: 10.1023/B:ANOR.0000039513.99038.c6
111 Doerner K F, Gutjahr W J, Hartl R F, Strauss C, Stummer C. Pareto ant colony optimization with ILP preprocessing in multiobjective portfolio selection. European Journal of Operational Research , 2006, 171(3): 830-841
doi: 10.1016/j.ejor.2004.09.009
112 García-Martínez C, Cordón O, Herrera F. A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research , 2007, 180(1): 116-148
doi: 10.1016/j.ejor.2006.03.041
113 Ehrgott M, Gandibleux X. Multiobjective combinatorial optimization— theory, methodology, and applications. In: Ehrgott E, Gandibleux X, eds. Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys . Boston: Kluwer Academic Publishers, 2002, 369-444
114 Gandibleux X, Ehrgott M. 1984-2004 – 20 years of multiobjective metaheuristics. But what about the solution of combinatorial problems with multiple objectives? In: Coello Coello C A, Hernández-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005) . Guanajuato: Springer, LNCS, 2005, 3410: 33-46
115 Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks . Piscataway:IEEE Service Center, 1995, 1942-1948
116 Kennedy J, Eberhart R C. Swarm Intelligence. San Francisco: Morgan Kaufmann Publishers, 2001
117 Eberhart R C, Shi Y. Comparison between genetic algorithms and particle swarm optimization. In: Porto V W, Saravanan N, Waagen D, Eibe A E, eds. Proceedings of the Seventh Annual Conference on Evolutionary Programming . Berlin: Springer-Verlag, 1998, 611-619
118 Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm. In: Proceedings of the 1997 IEEE Conference on Systems, Man, and Cybernetics . Piscataway: IEEE Service Center, 1997, 4104-4109
119 Engelbrecht A P. Computational Intelligence: An Introduction. Chichester: John Wiley & Sons, 2003
120 Engelbrecht A P. Fundamentals of Computational Swarm Intelligence. West Sussex: John Wiley & Sons, 2005
121 Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of 2003 IEEE Swarm Intelligence Symposium. Indianapolis: IEEE Service Center, 2003, 26-33
122 Li X D. A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Cantú-Paz E, , eds. Proceedings of Genetic and Evolutionary Computation—GECCO 2003, Part I. Berlin: Springer, LNCS, 2003, 2723: 37-48
123 Coello Coello C A, Toscano-Pulido G, Salazar Lechuga M. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation , 2004, 8(3): 256-279
doi: 10.1109/TEVC.2004.826067
124 Srinivasan D, Seow T H. Particle swarm inspired evolutionary algorithm (PS-EA) for multi-criteria optimization problems. In: Abraham A, Jain L, Goldberg R, eds. Evolutionary Multiobjective Optimization: Theoretical Advances And Applications . London: Springer-Verlag, 2005, 147-165
doi: 10.1007/1-84628-137-7_7
125 Alvarez-Benitez J E, Everson R M, Fieldsend J E. A MOPSO algorithm based exclusively on Pareto dominance concepts. In: Coello Coello C A, Hernánde-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005) . Guanajuato: Springer, LNCS, 2005, 3410: 459-473
126 Reyes-Sierra M, Coello Coello C A. Improving PSO-based multiobjective optimization using crowding, mutation and ?-dominance. In: Coello Coello C A, Aguirre A H, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005) . Guanajuato: Springer, LNCS, 2005, 3410: 505-519
127 Reyes-Sierra M, Coello Coello C A. Multi-objective particle swarm optimizers: a survey of the state-of-the-art. International Journal of Computational Intelligence Research , 2006, 2(3): 287-308
128 Branke J, Mostaghim S. About selecting the personal best in multiobjective particle swarm optimization. In: Runarsson T P, Beyer H G, Burke E, Merelo-Guervós J J, Whitley L D, Yao X, eds. Proceedings of Parallel Problem Solving from Nature- PPSN IX, 9th International Conference . Reykjavik: Springer, LNCS, 2006, 4193: 523-532
129 Toscano-Pulido G, Coello Coello C A, Santana-Quintero L V. EMOPSO: a multi-objective particle swarm optimizer with emphasis on efficiency. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007) . Springer, LNCS,2007, 4403: 272-285
130 Glover F. Heuristics for integer programming using surrogate constraints. Decision Sciences , 1977, 8: 156-166
doi: 10.1111/j.1540-5915.1977.tb01074.x
131 Glover F. Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Applied Mathematics , 1994, 49: 231-255
doi: 10.1016/0166-218X(94)90211-9
132 Laguna M, Mart′? R. Scatter Search : Methodology and Implementations in C. Bostion: Kluwer Academic Publishers, 2003
133 Martí R. Scatter search–wellsprings and challenges. European Journal of Operational Research , 2006, 169: 351-358
doi: 10.1016/j.ejor.2004.08.003
134 Romero-Zaliz R, Zwir I, Ruspini E. Generalized analysis of promoters: a method for DNA sequence description. In: Coello Coello C A, Lamont G B, eds. Applications of Multi-Objective Evolutionary Algorithms . World Scientific, 2004, 427-449
135 Vasconcelos J A, Maciel J H R D, Parreiras R O. Scatter search techniques applied to electromagnetic problems. IEEE Transactions on Magnetics , 2005, 41(5): 1804-1807
doi: 10.1109/TMAG.2005.846474
136 Beausoleil R P. “MOSS” multiobjective scatter search applied to nonlinear multiple criteria optimization. European Journal of Operational Research , 2006, 169(2): 426-449
doi: 10.1016/j.ejor.2004.08.008
137 Knowles J, Corne D. Memetic algorithms for multiobjective optimization: issues, methods and prospects. In: Hart W E, Krasnogor N, Smith J E, eds. Recent Advances in Memetic Algorithms . Heidelberg: Springer, Studies in Fuzziness and Soft Computing, 2005, 166: 313-352
138 Surry P D, Radcliffe N J. The COMOGA method: constrained optimization by multiobjective genetic algorithms. Control and Cybernetics , 1997, 26(3): 391-412
139 Hernández-Aguirre A, Botello-Rionda S, Lizárraga-Lizárraga G, Coello Coello C A. IS-PAES: multiobjective optimization with efficient constraint handling. In: Burczyński T, Osyczka A , eds. IUTAM Symposium on Evolutionary Methods in Mechanics . Drodrecht/ Boston/London: Kluwer Academic Publishers, 2004, 111-120
140 Wang Y, Cai Z X. A constrained optimization evolutionary algorithm based on multiobjective optimization techniques. In: Proceeding of 2005 IEEE Congress on Evolutionary Computation (CEC’2005) . Edinbugh: IEEE Service Center, 2005, 2: 1081-1087
141 Wang J C, Terpenny J P. Interactive preference incorporation in evolutionary engineering design. In: Jin Y C , ed. Knowledge Incorporation in Evolutionary Computation . Berlin: Springer, 2005, 525-543
142 Mezura-Montes E, Coello Coello C A. Constrained optimization via multiobjective evolutionary algorithms. In: Knowles J, Corne D, Deb K, eds. Multi-Objective Problem Solving from Nature: From Concepts to Applications . Berlin: Springer, 2008, 53-75
doi: 10.1007/978-3-540-72964-8_3
143 Gupta H, Deb K. Handling constraints in robust multi-objective optimization, In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’2005) . Edinburgh: IEEE Service Center, 2005, 1: 25-32
144 Oyama A, Shimoyama K, Fujii K. New constraint-handling method for multi-objective and multi-constraint evolutionary optimization. Transactions of the Japan Society for Aeronautical and Space Sciences , 2007, 50(167): 56-62
doi: 10.2322/tjsass.50.56
145 Woldesembet Y G, Tessema B G, Yen G G. Constraint handling in multi-objective evolutionary optimization. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation (CEC’2007) . Singapore: IEEE Press, 2007, 3077-3084
146 Harada K, Sakuma J, Ono I, Kobayashi S. Constraint-handling method for multi-objective function optimization: Pareto descent repair operator. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007) . Matshushima: Springer, LNCS, 2007, 4403: 156-170
147 Coello Coello C A. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering , 2002, 191(11-12): 1245-1287
doi: 10.1016/S0045-7825(01)00323-1
148 Cvetkovi? D, Parmee I C. Preferences and their application in evolutionary multiobjective optimisation. IEEE Transactions on Evolutionary Computation , 2002, 6(1): 42-57
doi: 10.1109/4235.985691
149 Jin Y C, Sendhoff B. Incorporation of fuzzy preferences into evolutionary multiobjective optimization. In: Langdon W B, Cantú-Paz E, Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter M A, Schultz A C, Miller J F, Burke E, Jonoska N, eds. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2002) . San Francisco: Morgan Kaufmann Publishers, 2002, 683
150 Branke J, Deb K. Integrating user preferences into evolutionary multiobjective optimization. In: Jin Y C, ed. Knowledge Incorporation in Evolutionary Computation . Berlin: Springer, 2005, 461-477
151 Figueira J, Mousseau V, Roy B, eds. Multiple Criteria Decision Analysis: State of the Art Surveys. New York: Springer, 2005
152 Eiben A E, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation , 1999, 3(2): 124-141
doi: 10.1109/4235.771166
153 Eiben A E, Michalewicz Z, Schoenauer M, Smith J E. Parameter control in evolutionary algorithms. In: Lobo F G, Lima C F, Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms . Berlin: Springer-Verlag, 2007, 19-46
doi: 10.1007/978-3-540-69432-8_2
154 Meyer-Nieberg S, Beyer H G. Self-adaptation in evolutionary algorithms . In: Lobo F G, Lima C F, Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms. Berlin: Springer-Verlag, 2007, 47-75
doi: 10.1007/978-3-540-69432-8_3
155 Laumanns M, Rudolph G, Schwefel H P. Mutation control and convergence in evolutionary multi-objective optimization. In: Proceedings of the 7th International Mendel Conference on Soft Computing (MENDEL 2001) . Brno: Brno University of Technology, 2001
156 Tan K C, Lee T H, Khor E F. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Transactions on Evolutionary Computation , 2001, 5(6): 565-588
doi: 10.1109/4235.974840
157 Büche D, Guidati G, Stoll P, Kourmoursakos P. Self-organizing maps for Pareto optimization of airfoils. In: Merelo Guervós J J, Adamidis P, Beyer H G, Fernández-Villacanas J L, Schwefel H P, eds. Parallel Problem Solving from Nature—PPSN VII . Granada: Springer-Verlag, LNCS, 2002, 2439: 122-131
158 Abbass H A. The self-adaptive Pareto differential evolution algorithm. In: Proceedings of Congress on Evolutionary Computation (CEC’2002) . Piscataway: IEEE Service Center, 2002, 831-836
159 Zhu Z Y, Leung K S. Asynchronous self-Adjustable island genetic algorithm for multi-objective optimization problems. In: Proceedings of Congress on Evolutionary Computation (CEC’2002) . Piscataway: IEEE Service Center, 2002, 1: 837-842
160 Deb K. Evolutionary multi-objective optimization without additional parameters. In: Lobo F G, Lima C F, Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms . Berlin: Springer-Verlag, 2007, 241-257
doi: 10.1007/978-3-540-69432-8_12
161 De Jong K. Parameter setting in EAs: a 30 year perspective. In: Lobo F G, Lima G F,Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms . Berlin: Springer-Verlag, 2007, 1-18
doi: 10.1007/978-3-540-69432-8_1
162 Toscano-Pulido G. On the use of self-adaptation and elitism for multiobjective particle swarm optimization. . Mexico City: CINVESTAV-IPN, 2005
163 Laumanns M, Thiele L, Zitzler E. Running time analysis of multiobjective evolutionary algorithms on Pseudo-Boolean functions. IEEE Transactions on Evolutionary Computation , 2004, 8(2): 170-182
doi: 10.1109/TEVC.2004.823470
164 Laumanns M, Thiele L, Zitzler E. Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Natural Computing , 2004, 3(1): 37-51
doi: 10.1023/B:NACO.0000023415.22052.55
165 Mostaghim S, Teich J, Tyagi A. Comparison of data structures for storing Pareto-sets in MOEAs. In: Proceedings of Congress on Evolutionary Computation (CEC’2002) . Piscataway: IEEE Service Center, 2002, 1: 843-848
166 Habenicht W. Quad trees: a data structure for discrete vector optimization problems. Lecture Notes in Economics and Mathematical Systems , 1982, 209: 136-145
167 Fieldsend J E, Everson R M, Singh S. Using unconstrained elite archives for multiobjective optimization. IEEE Transactions on Evolutionary Computation , 2003, 7(3): 305-323
doi: 10.1109/TEVC.2003.810733
168 Schütze O. A new data structure for the nondominance problem in multi-objective optimization. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Second International Conference (EMO 2003) . Springer, LNCS, 2003, 2632: 509-518
169 Laumanns M, Thiele L, Deb K, Zitzler E. On the convergence and diversity-preservation properties of multi-objective evolutionary algorithms. Technical Report 108, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) . Zurich, 2001
170 Villalobos-Arias M, Coello Coello C A, Hernández-Lerma O. Asymptotic convergence of metaheuristics for multiobjective optimization problems. Soft Computing , 2006, 10(11): 1001-1005
doi: 10.1007/s00500-005-0027-5
171 Schuetze O, Laumanns M, Tantar E, Coello Coello C A, Talbi E G. Convergence of stochastic search algorithms to gap-free Pareto front approximations. In: Thierens D, ed. Proceedings of 2007 Genetic and Evolutionary Computation Conference (GECCO’2007) . London: ACM Press, 2007, 1: 892-899
[1] Shuaiqiang WANG, Yilong YIN. Polygene-based evolutionary algorithms with frequent pattern mining[J]. Front. Comput. Sci., 2018, 12(5): 950-965.
[2] Yong WANG, Zhi-Zhong LIU, Jianbin LI, Han-Xiong LI, Jiahai WANG. On the selection of solutions for mutation in differential evolution[J]. Front. Comput. Sci., 2018, 12(2): 297-315.
[3] Ilyes KHENNAK, Habiba DRIAS. Strength Pareto fitness assignment for pseudo-relevance feedback: application to MEDLINE[J]. Front. Comput. Sci., 2018, 12(1): 163-176.
[4] Yan ZHANG,Dunwei GONG. Generating test data for both paths coverage and faults detection using genetic algorithms: multi-path case[J]. Front. Comput. Sci., 2014, 8(5): 726-740.
[5] Dunwei GONG, Yan ZHANG. Generating test data for both path coverage and fault detection using genetic algorithms[J]. Front Comput Sci, 2013, 7(6): 822-837.
[6] Maryjane TREMAYNE, Samantha Y. CHONG, Duncan BELL. Optimisation of algorithm control parameters in cultural differential evolution applied to molecular crystallography[J]. Front Comput Sci Chin, 2009, 3(1): 101-108.
[7] Yaochu JIN, Robin GRUNA, Bernhard SENDHOFF. Pareto analysis evolutionary and learning systems[J]. Front Comput Sci Chin, 2009, 3(1): 4-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed