Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci Chin    2009, Vol. 3 Issue (1) : 4-17    https://doi.org/10.1007/s11704-009-0004-8
RESEARCH ARTICLE
Pareto analysis evolutionary and learning systems
Yaochu JIN1(), Robin GRUNA1, Bernhard SENDHOFF2
1. Honda Research Institute Europe, Offenbach 63073, Germany; 2. Institut für Technische Informatik, Universit?t Karlsruhe (TH), Karlsruhe 76131, Germany
 Download: PDF(870 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper attempts to argue that most adaptive systems, such as evolutionary or learning systems, have inherently multiple objectives to deal with. Very often, there is no single solution that can optimize all the objectives. In this case, the concept of Pareto optimality is key to analyzing these systems.

To support this argument, we first present an example that considers the robustness and evolvability trade-off in a redundant genetic representation for simulated evolution. It is well known that robustness is critical for biological evolution, since without a sufficient degree of mutational robustness, it is impossible for evolution to create new functionalities. On the other hand, the genetic representation should also provide the chance to find new phenotypes, i.e., the ability to innovate. This example shows quantitatively that a trade-off between robustness and innovation does exist in the studied redundant representation.

Interesting results will also be given to show that new insights into learning problems can be gained when the concept of Pareto optimality is applied to machine learning. In the first example, a Pareto-based multi-objective approach is employed to alleviate catastrophic forgetting in neural network learning. We show that learning new information and memorizing learned knowledge are two conflicting objectives, and a major part of both information can be memorized when the multi-objective learning approach is adopted. In the second example, we demonstrate that a Pareto-based approach can address neural network regularizationmore elegantly. By analyzing the Pareto-optimal solutions, it is possible to identifying interesting solutions on the Pareto front.

Keywords Pareto analysis      multi-objective optimization      evolution      evolvability      robustness      learning      accuracy      complexity     
Corresponding Author(s): JIN Yaochu,Email:yaochu.jin@honda-ri.de   
Issue Date: 05 March 2009
 Cite this article:   
Yaochu JIN,Robin GRUNA,Bernhard SENDHOFF. Pareto analysis evolutionary and learning systems[J]. Front Comput Sci Chin, 2009, 3(1): 4-17.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0004-8
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I1/4
1 Ancel L, Bull J. Fighting change with change: adaptive variation in an uncertain world. Trends in Ecology and Evolution , 2002, 17(12): 551-557
doi: 10.1016/S0169-5347(02)02633-2
2 Tononi G, Sporns O, Edelman G. A measure for brain complexity: relating functional segregation and integration in the nervous system. In: Proceedings of the National Academy of Science of the United States of America , 1994, 91: 5033-5031
doi: 10.1073/pnas.91.11.5033
3 Teo J, Abbass H. Multiobjectivity and complexity in embodied cognition. IEEE Transactions on Evolutionary Computation , 2005, 9(4): 337-360
doi: 10.1109/TEVC.2005.846902
4 Louis S, Rawlines G. Pareto optimality, GA-easiness and deception. In: Proceedings of The Fifth International Conference on Genetic Algorithms. Morgan Kaufmann , 1993, 118-123
5 Knowles J, Watson R, Corne D. Reducing local optima in singleobjective problems by multi-objectivization. In: Proceedings of International Conference on Evolutionary Muti-Griterion Optimization . Berlin: Springer, LNCS, 2001, 1993: 269-283
6 Jensen M. Helper-objectives: using multi-objective evolutionary algorithms for single-objective optimization. Journal of Mathematical Modeling and Algorithms , 2004, 3(4): 323-347
doi: 10.1023/B:JMMA.0000049378.57591.c6
7 Bui L, Branke J, Abbass H. Multi-objective optimization for dynamic environments. In: Proceedings of Congress on Evolutionary Computation . IEEE, 2005, 2349-2356
8 Jin Y, Sendhoff B. Pareto-based multi-objective machine learning: an overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews , 2008, 38(3): 397-415
doi: 10.1109/TSMCC.2008.919172
9 Allman J. Evolving Brains. Scientific American Library , 1999
10 Jones B, Jin Y, Sendhoff B, Yao X. Evolving functional symmetry in a three dimensional model of an elongated organism. Artificial Life XI , 2008, 305-312
11 Stearns S. Trade-offs in life-history evolution. Functional Ecology , 1989, 3: 259-268
doi: 10.2307/2389364
12 Mukhopadhyay A, Tissenbaum H. Reproduction and longevity: secrets revealed by c. elegans. Trends in Cell Biology , 2007, 17(2): 65-71
doi: 10.1016/j.tcb.2006.12.004
13 Paenke I, Branke J, Jin Y. On the influence of phenotype plasticity on genotype diversity. In: Proceedings of 2007 IEEE Symposium on Foudations of Computational Intelligence (FOCI) , 2007, 33-40
14 Charnov E, Ernest S. The offspring-size / clutch-size trade-off in mammals. The American Naturalist , 2006, 167(4): 578-582
doi: 10.1086/501141
15 Handl J, Kell D, Knowles J. Multi-objective optimization in computational biology and bioinformatics. ACM/IEEE Transactions on Computational Biology and Bioinformations , 2007, 4: 279-292
16 Kitano H. Biological robustness. Nature Reviews Genetics , 2004, 5(11): 826-837
doi: 10.1038/nrg1471
17 Wagner A. Robustness and Evolvability in Living Systems. Princeton University Press , 2007
18 Lenski R, Barrick J, Ofria C. Balancing robustness and evolvability. Public Library of Science Biology , 2006, 4(2): e428
19 Cilibert S, Martin O, Wagner A. Innovation and robustness in complex gene networks. In: Proceedings of the National Academy of Science of the United states of America , 2007, 104(34): 13591-13596
20 Deb K, Agrawal S, Pratab A, Meyarivan T. A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M, Deb K, Rudolph G, . eds. Proceedings of the Parallel Problem Solving from Nature VI Conference . Paris: Springer, LNCS, 2000, 1917: 849-858
21 Lehre P K, Haddow P C. Phenotypic complexity and local variations in neutral degree. Biosystems , 2007, 87: 233-242
doi: 10.1016/j.biosystems.2006.09.018
22 Kirschner M, Gerhart J. Evolvability. In: Proceedings of the National Academy of Science of the United states of America , 1998, 95(15): 8420-8427
23 Fernández P, Solé R V. Neutral fitness landscapes in signalling networks. Journal of the Royal Society, Interface / the Royal Society , 2007, 4: 41-47
24 Stadler B M R, Stadler P F, Wagner G P, Fontana W. The topology of the possible: formal spaces underlying patterns of evolutionary change. Journal of Theoretical Biology , 2000, 213: 41-47
25 Gruna R. Analysis of redundant genotype-phenotype mappings- Investigation of the effect of neutrality on evolvability and robustness. . Universit?t Karlsruhe , 2007
26 Magurran A. Ecological Diversity and its Measurement. Princeton University Press, 1988
27 Yu T. Program evolvability under environmental variations and neutrality. In: Proceedings of European Conference on Artificial Life (ECAL 2007) , 2007, 835-844
28 Jin Y. Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Transactions on Fuzzy Systems , 2000, 8(2): 212-221
doi: 10.1109/91.842154
29 Jin Y, Advanced Fuzzy Systems Design and Applications. Heidelberg: Physica-Verlag/Springer-Verlag, 2003
30 Igel C. Multi-objective model selection for support vector machines. In: Proceedings of Evolutionary Multi-Criterion Optimization, LNCS , 2005, 3410: 534-546
31 Olshausen B. Relations between the statistics of narutal image and the response property of cortical cells. Nature , 1996, 381: 607-609
doi: 10.1038/381607a0
32 Abraham W, Robins A. Memory retention-the synaptic stability versus plasticity dilemma. Trends in Neuroscience , 2005, 28(2): 73-78
doi: 10.1016/j.tins.2004.12.003
33 McCloskey M, Cohen N. Catastrophic interference in connectionist networks: the sequential learning problem. The Psychology of Learning and Motivation , 1989, 24: 109-165
doi: 10.1016/S0079-7421(08)60536-8
34 French R. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences , 1999, 3(4): 128-135
doi: 10.1016/S1364-6613(99)01294-2
35 Jin Y, Sendhoff B. Alleviating catastrophic forgetting via multiobjective learning. In: Proceedings of International Joint Conference on Neural Networks , 2006, 3335-3342
[1] Xia-an BI, Yiming XIE, Hao WU, Luyun XU. Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm[J]. Front. Comput. Sci., 2021, 15(6): 156903-.
[2] Yan-Ping SUN, Min-Ling ZHANG. Compositional metric learning for multi-label classification[J]. Front. Comput. Sci., 2021, 15(5): 155320-.
[3] Huiying ZHANG, Yu ZHANG, Xin GENG. Practical age estimation using deep label distribution learning[J]. Front. Comput. Sci., 2021, 15(3): 153318-.
[4] Ahmer Khan JADOON, Jing LI, Licheng WANG. Physical layer authentication for automotive cyber physical systems based on modified HB protocol[J]. Front. Comput. Sci., 2021, 15(3): 153809-.
[5] Ibrahim ALSEADOON, Aakash AHMAD, Adel ALKHALIL, Khalid SULTAN. Migration of existing software systems to mobile computing platforms: a systematic mapping study[J]. Front. Comput. Sci., 2021, 15(2): 152204-.
[6] Jian SUN, Pu-Feng DU. Predicting protein subchloroplast locations: the 10th anniversary[J]. Front. Comput. Sci., 2021, 15(2): 152901-.
[7] Han Yao HUANG, Kyung Tae KIM, Hee Yong YOUN. Determining node duty cycle using Q-learning and linear regression for WSN[J]. Front. Comput. Sci., 2021, 15(1): 151101-.
[8] Jianpeng HU, Linpeng HUANG, Tianqi SUN, Ying FAN, Wenqiang HU, Hao ZHONG. Proactive planning of bandwidth resource using simulation-based what-if predictions forWeb services in the cloud[J]. Front. Comput. Sci., 2021, 15(1): 151201-.
[9] Syed Farooq ALI, Muhammad Aamir KHAN, Ahmed Sohail ASLAM. Fingerprint matching, spoof and liveness detection: classification and literature review[J]. Front. Comput. Sci., 2021, 15(1): 151310-.
[10] Hanze DONG, Zhenfeng SUN, Yanwei FU, Shi ZHONG, Zhengjun ZHANG, Yu-Gang JIANG. Extreme vocabulary learning[J]. Front. Comput. Sci., 2020, 14(6): 146315-.
[11] Yihui LIANG, Han HUANG, Zhaoquan CAI. PSO-ACSC: a large-scale evolutionary algorithm for image matting[J]. Front. Comput. Sci., 2020, 14(6): 146321-.
[12] Yu ZHU, Zhonglin YE, Haixing ZHAO, Ke ZHANG. Text-enhanced network representation learning[J]. Front. Comput. Sci., 2020, 14(6): 146322-.
[13] Ildar NURGALIEV, Qiang QU, Seyed Mojtaba Hosseini BAMAKAN, Muhammad MUZAMMAL. Matching user identities across social networks with limited profile data[J]. Front. Comput. Sci., 2020, 14(6): 146809-.
[14] Hui ZHONG, Zaiyi CHEN, Chuan QIN, Zai HUANG, Vincent W. ZHENG, Tong XU, Enhong CHEN. Adam revisited: a weighted past gradients perspective[J]. Front. Comput. Sci., 2020, 14(5): 145309-.
[15] Lei CHEN, Kai SHAO, Xianzhong LONG, Lingsheng WANG. Multi-task regression learning for survival analysis via prior information guided transductive matrix completion[J]. Front. Comput. Sci., 2020, 14(5): 145312-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed