Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2021, Vol. 15 Issue (3) : 153318    https://doi.org/10.1007/s11704-020-8272-4
RESEARCH ARTICLE
Practical age estimation using deep label distribution learning
Huiying ZHANG1,2, Yu ZHANG2, Xin GENG2()
1. Pujiang Institute, Nanjing Tech University, Nanjing 211200, China
2. School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
 Download: PDF(355 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Age estimation plays an important role in humancomputer interaction system. The lack of large number of facial images with definite age label makes age estimation algorithms inefficient. Deep label distribution learning (DLDL) which employs convolutional neural networks (CNN) and label distribution learning to learn ambiguity from ground-truth age and adjacent ages, has been proven to outperform current state-of-the-art framework. However, DLDL assumes a rough label distribution which covers all ages for any given age label. In this paper, a more practical label distribution paradigm is proposed: we limit age label distribution that only covers a reasonable number of neighboring ages. In addition, we explore different label distributions to improve the performance of the proposed learning model. We employ CNN and the improved label distribution learning to estimate age. Experimental results show that compared to the DLDL, our method is more effective for facial age recognition.

Keywords deep learning      convolutional neural networks      label distribution learning      facial age estimation     
Corresponding Author(s): Xin GENG   
Just Accepted Date: 08 January 2020   Issue Date: 24 December 2020
 Cite this article:   
Huiying ZHANG,Yu ZHANG,Xin GENG. Practical age estimation using deep label distribution learning[J]. Front. Comput. Sci., 2021, 15(3): 153318.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-020-8272-4
https://academic.hep.com.cn/fcs/EN/Y2021/V15/I3/153318
1 X Geng, C Yin, Z H Zhou. Facial age estimation by learning from label distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(10): 2401–2412
https://doi.org/10.1109/TPAMI.2013.51
2 X Geng. Label distribution learning. IEEE Transactions on Knowledge and Data Engineering, 2014, 28(7): 1734–1748
https://doi.org/10.1109/TKDE.2016.2545658
3 B B Gao, C Xing, C W Xie, J Wu, X Geng. Deep label distribution learning with label ambiguity. IEEE Transactions on Image Processing, 2017, 26(6): 2825–2838
https://doi.org/10.1109/TIP.2017.2689998
4 X Geng, Q Wang, Y Xia. Facial age estimation by adaptive label distribution learning. In: Proceeding of the 22nd International Conference on Pattern Recognition. 2014, 4465–4470
https://doi.org/10.1109/ICPR.2014.764
5 M G Ling, X Geng. Soft video parsing by label distribution learning. Frontiers of Computer Science, 2019, 13(2): 302–317
https://doi.org/10.1007/s11704-018-8015-y
6 Y F Li, D M Liang. Safe semi-supervised learning: a brief introduction. Frontiers of Computer Science, 2019, 13(4): 669–676
https://doi.org/10.1007/s11704-019-8452-2
7 X Y Liu, S T Wang, M L Zhang. Transfer synthetic over-sampling for class-imbalance learning with limited minority class data. Frontiers of Computer Science, 2019, 13(5): 996–1009
https://doi.org/10.1007/s11704-018-7182-1
8 R Zhao, X Niu, Y Wu, W Luk, Q Liu. Optimizing CNN-based object detection algorithms on embedded FPGA platforms. In: Proceedings of the 13th International Symposium on Applied Reconfigurable Computing. 2017, 255–267
https://doi.org/10.1007/978-3-319-56258-2_22
9 Z He, M Kan, J Zhang, X Chen, S Shan. A fully end-to-end cascaded CNN for facial landmark detection. In: Proceeding of the 12th IEEE International Conference on Automatic Face and Gesture Recognition. 2017, 200–207
https://doi.org/10.1109/FG.2017.33
10 D Marmanis, J D Wegner, S Galliani, K Schindler, M Datu, U Stilla. Semantic segmentation of aerial images with an ensemble of CNNs. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 3(3): 273–480
https://doi.org/10.5194/isprsannals-III-3-473-2016
11 R Ranjan, VM Patel, R Chellappa. HyperFace: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 41(1): 121–135
https://doi.org/10.1109/TPAMI.2017.2781233
12 A Graves, N Jaitly, A R Mohamed. Hybrid speech recognition with deep bidirectional LSTM. IEEE Automatic Speech Recognition and Understanding, 2014, 1(3): 273–278
https://doi.org/10.1109/ASRU.2013.6707742
13 Y Fan, X J Lu, D Li, Y L Liu. Video-based emotion recognition using CNN-RNN and C3D hybrid networks. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction. 2016, 445–450
https://doi.org/10.1145/2993148.2997632
14 Y Chen, X Yang, B Zhong, S Pan, D Chen, H Zhang. CNN tracker: online discriminative object tracking via deep convolutional neural network. Applied Soft Computing, 2016, 2(38): 1088–1098
https://doi.org/10.1016/j.asoc.2015.06.048
15 G Guo, G Mu. Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition. 2011, 657–644
https://doi.org/10.1109/CVPR.2011.5995404
16 G Guo, G Mu. Joint estimation of age, gender and ethnicity: CCA vs. PLS. In: Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. 2013, 1–6
https://doi.org/10.1109/FG.2013.6553737
17 W B Horng. Classification of age groups based on facial features. Tamkang Journal of Science and Engineering, 2001, 4(3): 183–192
18 Z A Othman, D A Adnan. Age classification from facial images system. International Journal of Computer Science and Mobile Computing, 2014, 3(10): 291–303
19 Y H Kwon, N D Vitoria Lobo. Age classification from facial images. Computer Vision and Image Understanding, 1999, 74(1): 1–21
https://doi.org/10.1006/cviu.1997.0549
20 T F Cootes, G J Edwards, C J Taylor. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681–685
https://doi.org/10.1109/34.927467
21 Y Fu, T S Huang. Human age estimation with regression on discriminative aging manifold. IEEE Transactions on Multimedia, 2008, 10(4): 578–584
https://doi.org/10.1109/TMM.2008.921847
22 X Geng, Z H Zhou, K Smithmiles. Automatic age estimation based on facial aging patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2234–2240
https://doi.org/10.1109/TPAMI.2007.70733
23 D R Hardoon, S Szedmak, J Shawe-Taylor. Canonical correlation analysis: an overview with application to learning methods. Neural Computation, 2004, 16(12): 2639–2664
https://doi.org/10.1162/0899766042321814
24 P Geladi, B R Kowalski. Partial least-squares regression: a tutorial. Analytica Chimica Acta, 1986, 185(1): 1–17
https://doi.org/10.1016/0003-2670(86)80028-9
25 D Basak, P Srimanta, D C Patranabis. Support vector regression. Neural Information Processing-letter and Reviews, 2007, 11(10): 203–224
26 D Yi, Z Lei, S Z Li. Age estimation by multi-scale convolutional network. In: Proceedings of the 12th Asian Conference on Computer Vision. 2014, 144–158
https://doi.org/10.1007/978-3-319-16811-1_10
27 S Chen, C Zhang, M Dong. Deep age estimation: from classification to ranking. IEEE Transactions on Multimedia, 2017, 20(8): 2209–2222
https://doi.org/10.1109/TMM.2017.2786869
28 Z Z Hu, Y G Wen. Facial age estimation with age difference. IEEE Transactions on Image Processing, 2017, 26(7): 3087–3097
https://doi.org/10.1109/TIP.2016.2633868
29 M Duan, K Li, K Lia. An ensemble CNN2ELM for age estimation. IEEE Transactions on Information Forensics and Security, 2017, 99(1): 1–12
30 X Geng, C Yin, Z H Zhou. Facial age estimation by learning from label distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(10): 2401–2412
https://doi.org/10.1109/TPAMI.2013.51
31 J K Ricanek, T Tesafaye. Morph: a longitudinal image database of normal adult age-progression. In: Proceedings the 7th International Conference on Automatic Face and Gesture Recognition. 2006, 341–345
32 M Mathias, R Benenson, M Pedersoli, L Van Gool. Face detection without bells and whistles. In: Proceedings of European Conference on Computer Vision. 2014, 720–735
https://doi.org/10.1007/978-3-319-10593-2_47
[1] Ashok KUMAR, Arpit JAIN. Image smog restoration using oblique gradient profile prior and energy minimization[J]. Front. Comput. Sci., 2021, 15(6): 156706-.
[2] Anirban DUTTA, Gudmalwar ASHISHKUMAR, Ch V Rama RAO. Performance analysis of ASR system in hybrid DNN-HMM framework using a PWL euclidean activation function[J]. Front. Comput. Sci., 2021, 15(4): 154705-.
[3] Syed Farooq ALI, Muhammad Aamir KHAN, Ahmed Sohail ASLAM. Fingerprint matching, spoof and liveness detection: classification and literature review[J]. Front. Comput. Sci., 2021, 15(1): 151310-.
[4] Chune LI, Yongyi MAO, Richong ZHANG, Jinpeng HUAI. A revisit to MacKay algorithm and its application to deep network compression[J]. Front. Comput. Sci., 2020, 14(4): 144304-.
[5] Guijuan ZHANG, Yang LIU, Xiaoning JIN. A survey of autoencoder-based recommender systems[J]. Front. Comput. Sci., 2020, 14(2): 430-450.
[6] Miaogen LING, Xin GENG. Soft video parsing by label distribution learning[J]. Front. Comput. Sci., 2019, 13(2): 302-317.
[7] Anna ZHU, Seiichi UCHIDA. Scene word recognition from pieces to whole[J]. Front. Comput. Sci., 2019, 13(2): 292-301.
[8] Qianjun ZHANG, Lei ZHANG. Convolutional adaptive denoising autoencoders for hierarchical feature extraction[J]. Front. Comput. Sci., 2018, 12(6): 1140-1148.
[9] Jun ZHANG, Bineng ZHONG, Pengfei WANG, Cheng WANG, Jixiang DU. Robust feature learning for online discriminative tracking without large-scale pre-training[J]. Front. Comput. Sci., 2018, 12(6): 1160-1172.
[10] Lili HUANG, Jiefeng PENG, Ruimao ZHANG, Guanbin LI, Liang LIN. Learning deep representations for semantic image parsing: a comprehensive overview[J]. Front. Comput. Sci., 2018, 12(5): 840-857.
[11] Xin LIU,Meina KAN,Wanglong WU,Shiguang SHAN,Xilin CHEN. VIPLFaceNet: an open source deep face recognition SDK[J]. Front. Comput. Sci., 2017, 11(2): 208-218.
[12] Feifei ZHANG,Yongbin YU,Qirong MAO,Jianping GOU,Yongzhao ZHAN. Pose-robust feature learning for facial expression recognition[J]. Front. Comput. Sci., 2016, 10(5): 832-844.
[13] Wenge RONG,Baolin PENG,Yuanxin OUYANG,Chao LI,Zhang XIONG. Structural information aware deep semi-supervised recurrent neural network for sentiment analysis[J]. Front. Comput. Sci., 2015, 9(2): 171-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed