Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2021, Vol. 15 Issue (2) : 152901    https://doi.org/10.1007/s11704-020-9507-0
REVIEW ARTICLE
Predicting protein subchloroplast locations: the 10th anniversary
Jian SUN, Pu-Feng DU()
College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
 Download: PDF(358 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chloroplast is a type of subcellular organelle in green plants and algae. It is the main subcellular organelle for conducting photosynthetic process. The proteins, which localize within the chloroplast, are responsible for the photosynthetic process at molecular level. The chloroplast can be further divided into several compartments. Proteins in different compartments are related to different steps in the photosynthetic process. Since the molecular function of a protein is highly correlated to the exact cellular localization, pinpointing the subchloroplast location of a chloroplast protein is an important step towards the understanding of its role in the photosynthetic process. Experimental process for determining protein subchloroplast location is always costly and time consuming. Therefore, computational approaches were developed to predict the protein subchloroplast locations from the primary sequences. Over the last decades, more than a dozen studies have tried to predict protein subchloroplast locations with machine learning methods. Various sequence features and various machine learning algorithms have been introduced in this research topic. In this review, we collected the comprehensive information of all existing studies regarding the prediction of protein subchloroplast locations. We compare these studies in the aspects of benchmarking datasets, sequence features, machine learning algorithms, predictive performances, and the implementation availability. We summarized the progress and current status in this special research topic. We also try to figure out the most possible future works in predicting protein subchloroplast locations. We hope this review not only list all existing works, but also serve the readers as a useful resource for quickly grasping the big picture of this research topic.We also hope this review work can be a starting point of future methodology studies regarding the prediction of protein subchloroplast locations.

Keywords subchloroplast locations      sequence features      performance measures      online services      machine learning     
Corresponding Author(s): Pu-Feng DU   
Just Accepted Date: 25 August 2020   Issue Date: 19 October 2020
 Cite this article:   
Jian SUN,Pu-Feng DU. Predicting protein subchloroplast locations: the 10th anniversary[J]. Front. Comput. Sci., 2021, 15(2): 152901.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-020-9507-0
https://academic.hep.com.cn/fcs/EN/Y2021/V15/I2/152901
1 R F Murphy. Automated interpretation of protein subcellular location patterns: implications for early cancer detection and assessment. Annals of the New York Academy of Sciences, 2004, 1020: 124–131
2 K Imai, K Nakai. Prediction of subcellular locations of proteins: where to proceed? Proteomics, 2010, 10(22): 3970–3983
3 Y Zhao, J Wang, M Guo, Z Zhang, G Yu. Protein function prediction based on zero-one matrix factorization. SCIENTIA SINICA Informationis, 2019, 49(9): 1159–1174
4 Z Wang, C Zhao, Y Wang, Z Sun, N Wang. PANDA: protein function prediction using domain architecture and affinity propagation. Scientific Reports, 2018, 8(1): 1–10
5 M Kulmanov, R Hoehndorf. DeepGOPlus: improved protein function prediction from sequence. Bioinformatics, 2020, 36(2): 422–429
6 G Yu, K Wang, C Domeniconi, M Guo, J Wang. Isoform function prediction based on bi-random walks on a heterogeneous network. Bioinformatics, 2020, 36(1): 303–310
7 A Reinhardt, T Hubbard. Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Research, 1998, 26(1): 2230–2236
8 T N K Raju. The Nobel chronicles. The Lancet, 2000, 356: 261
9 K Bacia. Intracellular transport mechanisms: Nobel prize for medicine 2013. Angewandte Chemie International Edition, 2013, 52(48): 12486–12488
10 M J Friedrich. 2013 Nobel prize recognizes work of scientists who illuminated molecular transport system of cells. JAMA: The Journal of the American Medical Association, 2013, 310(19): 2027–2029
https://doi.org/10.1001/jama.2013.281691
11 W T Wickner. Profile of Thomas Sudhof, James Rothman, And Randy Schekman, 2013 Nobel laureates in physiology or medicine. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18349–18350
https://doi.org/10.1073/pnas.1319309110
12 P J Thul, L Åesson, M Wiking, D Mahdessian, A Geladaki, H AitBlal, T Alm, A Asplund, L Björk, LM Breckels, A Bäckström, F Danielsson, L Fagerberg, J Fall, L Gatto, C Gnann, S Hober, M Hjelmare, F Johansson, S Lee, C Lindskog, J Mulder, CM Mulvey, P Nilsson, P Oksvold, J Rockberg, R Schutten, J M Schwenk, Å Sivertsson, E Sjöstedt, M Skogs, C Stadler, D P Sullivan, H Tegel, C Winsnes, C Zhang, M Zwahlen, A Mardinoglu, F Pontén, K von Feilitzen, K S Lilley, M Uhlén, E Lundberg. A subcellular map of the human proteome. Science, 2017, 356(6340): eaal3321
13 R Horwitz, G T Johnson. Whole cell maps chart a course for 21st-century cell biology. Science, 2017, 356(6340): 806–807
14 K C Chou, H B Shen. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE, 2010, 5(6): e11335
15 H B Shen, K C Chou. A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0. Analytical Biochemistry, 2009, 394(2): 269–274
16 H B Shen, K C Chou. Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. Journal of Biomolecular Structure & Dynamics, 2010, 28(2): 175–186
17 H B Shen, K C Chou. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. Journal of Theoretical Biology, 2010, 264(2): 326–333
18 K C Chou, Z C Wu, X Xiao. ILoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE, 2011, 6(3): e18258
19 K C Chou, Z C Wu, X Xiao. ILoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Molecular BioSystems, 2012, 8(2): 629–641
https://doi.org/10.1039/C1MB05420A
20 Z C Wu, X Xiao, K C Chou. ILoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Molecular BioSystems, 2011, 7(12): 3287–3297
https://doi.org/10.1039/c1mb05232b
21 Z C Wu, X Xiao, K C Chou. ILoc-Gpos: a multi-layer classifier for predicting the subcellular localization of singleplex and multiplex Grampositive bacterial proteins. Protein and Peptide Letters, 2012, 19(1): 4–14
22 X Xiao, Z C Wu, K C Chou. ILoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. Journal of Theoretical Biology, 2011, 284(1): 42–51
23 W Z Lin, J A Fang, X Xiao, K C Chou. ILoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins. Molecular BioSystems, 2013, 9(4): 634–644
24 Y Y Xu, F Yang, Y Zhang, H B Shen. An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues. Bioinformatics, 2013, 29(16): 2032–2040
25 P Du, L Wang. Predicting human protein subcellular locations by the ensemble of multiple predictors via protein-protein interaction network with edge clustering coefficients. PLoS ONE, 2014, 9(1): e86879
26 X Cheng, S G Zhao, W Z Lin, X Xiao, K C Chou. PLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33(22): 3524–3531
27 H Zhou, Y Yang, H B Shen. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features. Bioinformatics, 2017, 33(6): 843–853
28 Z Wang, Q Zou, Y Jiang, Y Ju, X Zeng. Review of protein subcellular localization prediction. Current Bioinformatics, 2014, 9(3): 331–342
29 P Du, T Li, X Wang. Recent progress in predicting protein subsubcellular locations. Expert Review of Proteomics, 2011, 8(3): 391–404
30 H B Shen, K C Chou. Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Engineering, Design & Selection: PEDS, 2007, 20(11): 561–567
31 G S Han, Z G Yu, V Anh, A P D Krishnajith, Y C Tian. An ensemble method for predicting subnuclear localizations from primary protein structures. PLoS ONE, 2013, 8(2): e57225
32 Y S Jiao, P F Du. Predicting protein submitochondrial locations by incorporating the positional-specific physicochemical properties into Chou’s general pseudo-amino acid compositions. Journal of Theoretical Biology, 2017, 416: 81–87
33 P F Du. Predicting protein submitochondrial locations: the 10th anniversary. Current Genomics, 2017, 18(4): 316–321
34 P Du, Y Li. Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinformatics, 2006, 7: 518
35 K Ahmad, M Waris, M Hayat. Prediction of protein submitochondrial locations by incorporating dipeptide composition into Chou’s general pseudo amino acid composition. The Journal of Membrane Biology, 2016, 249(3): 293–304
36 W Zhao, G P Li, J Wang, Y K Zhou, Y Gao, P F Du. Predicting protein sub-Golgi locations by combining functional domain enrichment scores with pseudo-amino acid compositions. Journal of Theoretical Biology, 2019, 473: 38–43
37 Y S Jiao, P F Du. Prediction of Golgi-resident protein types using general form of Chou’s pseudo-amino acid compositions: approaches with minimal redundancy maximal relevance feature selection. Journal of Theoretical Biology, 2016, 402: 38–44
38 Y S Jiao, P F Du. Predicting Golgi-resident protein types using pseudo amino acid compositions: approaches with positional specific physicochemical properties. Journal of Theoretical Biology, 2016, 391: 35–42
39 H Ding, S H Guo, E Z Deng, L F Yuan, F B Guo, J Huang, N Rao, W Chen, H Lin. Prediction of Golgi-resident protein types by using feature selection technique. Chemometrics and Intelligent Laboratory Systems, 2013, 124: 9–13
40 H Ding, L Liu, F B Guo, J Huang, H Lin. Identify Golgi protein types with modified Mahalanobis discriminant algorithm and pseudo amino acid composition. Protein and Peptide Letters, 2011, 18(1): 58–63
https://doi.org/10.2174/092986611794328708
41 M S Rahman, M K Rahman, M Kaykobad, M S Rahman. IsGPT: an optimized model to identify sub-Golgi protein types using SVM and Random forest based feature selection. Artificial Intelligence in Medicine, 2018, 84: 90–100
https://doi.org/10.1016/j.artmed.2017.11.003
42 W C Chou, Y Yin, Y Xu. GolgiP: prediction of Golgi-resident proteins in plants. Bioinformatics, 2010, 26(19): 2464–2465
43 A D J van Dijk, D Bosch, C J F ter Braak, A R van der Krol, R C H J van Ham. Predicting sub-Golgi localization of type II membrane proteins. Bioinformatics, 2008, 24(16): 1779–1786
44 P Du, S Cao, Y Li. SubChlo: predicting protein subchloroplast locations with pseudo-amino acid composition and the evidence-theoretic K-nearest neighbor (ET-KNN) algorithm. Journal of Theoretical Biology, 2009, 261(2): 330–335
https://doi.org/10.1016/j.jtbi.2009.08.004
45 T Denoeux. A k-nearest neighbor classification rule based on Dempster- Shafer theory. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25(5): 804–813
46 X Wang, W Zhang, Q Zhang, G Z Li. MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou’s pseudo amino acid composition and a novel multi-label classifier. Bioinformatics, 2015, 31(16): 2639–2645
47 C Savojardo, P L Martelli, P Fariselli, R Casadio. SChloro: directing viridiplantae proteins to six chloroplastic sub-compartments. Bioinformatics, 2017, 33(3): 347–353
48 K C Chou. Some remarks on protein attribute prediction and pseudo amino acid composition. Journal of Theoretical Biology, 2011, 273(1): 236–247
49 UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Research, 2015, 43(D1): D204–D212
50 L Fu, B Niu, Z Zhu, S Wu, W Li. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23): 3150–3152
51 H Lin, W Chen, L F Yuan, Z Q Li, H Ding. Using over-represented tetrapeptides to predict protein submitochondria locations. ActaBiotheoretica, 2013, 61(2): 259–268
52 C W Tung, C Liaw, S J Ho, S Y Ho. Prediction of protein subchloroplast locations using random forests. World Academy of Science, Engineering and Technology, 2010, 65: 903–907
53 J Hu, X Yan. BS-KNN: an effective algorithm for predicting protein subchloroplast localization. Evolutionary Bioinformatics Online, 2012, 8: 79–87
54 V Saravanan, P T V Lakshmi. SCLAP: an adaptive boosting method for predicting subchloroplast localization of plant proteins. OMICS: A Journal of Integrative Biology, 2013, 17(2): 106–115
55 G Wang, R L Dunbrack Jr. PISCES: a protein sequence culling server. Bioinformatics, 2003, 19(12): 1589–1591
https://doi.org/10.1093/bioinformatics/btg224
56 K C Chou, H B Shen. Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. Journal of Proteome Research, 2007, 6(5): 1728–1734
https://doi.org/10.1021/pr060635i
57 W Zhao, L Wang, T X Zhang, Z N Zhao, P F Du. A brief review on software tools in generating chou’s pseudo-factor representations for all types of biological sequences. Protein and Peptide Letters, 2018, 25(9): 822–829
58 H Lin, C Ding, L F Yuan, W Chen, H Ding, Z Q Li, F B Guo, J Huang, N N Rao. Predicting subchloroplast locations of proteins based on the general form of chou’s pseudo amino acid composition: approached from optimal tripeptide composition. International Journal of Biomathematics, 2013, 6(2): 1350003
59 P Du, C Xu. Predicting multisite protein subcellular locations: progress and challenges. Expert Review of Proteomics, 2013, 10(3): 227–237
60 C Huang, J Q Yuan. Predicting protein subchloroplast locations with both single and multiple sites via three different modes of Chou’s pseudo amino acid compositions. Journal of Theoretical Biology, 2013, 335: 205–212
61 S Wan, Y Duan, Q Zou. HPSLPred: an ensemble multi-label classifier for human protein subcellular location prediction with imbalanced source. Proteomics, 2017, 17(17–18): 1700262
https://doi.org/10.1002/pmic.201700262
62 W Hussain, Y D Khan, N Rasool, S A Khan, K C Chou. SPalmitoylCPseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins. Analytical Biochemistry, 2019, 568: 14–23
https://doi.org/10.1016/j.ab.2018.12.019
63 N Q K Le, E K Y Yapp, Q T Ho, N Nagasundaram, Y Y Ou, H Y Yeh. IEnhancer-5Step: identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Analytical Biochemistry, 2019, 571: 53–61
https://doi.org/10.1016/j.ab.2019.02.017
64 K C Chou. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 2001, 43(3): 246–255
https://doi.org/10.1002/prot.1035
65 J Chen, R Long, X L Wang, B Liu, K C Chou. DRHP-PseRA: detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation. Scientific Reports, 2016, 6: 32333
https://doi.org/10.1038/srep32333
66 Q Y Chen, J Tang, P F Du. Predicting protein lysine phosphoglycerylation sites by hybridizing many sequence based features. Molecular Biosystems, 2017, 13(5): 874–882
https://doi.org/10.1039/C6MB00875E
67 Y A Huang, Z H You, X Chen, G Y Yan. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. BMC Systems Biology, 2016, 10(4): 485–494
https://doi.org/10.1186/s12918-016-0360-6
68 J Jia, L Zhang, Z Liu, X Xiao, K C Chou. PSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32(20): 3133–3141
https://doi.org/10.1093/bioinformatics/btw387
69 G C Lei, J Tang, P F Du. Predicting S-sulfenylation sites using physicochemical properties differences. Letters in Organic Chemistry, 2017, 14(9): 665–672
https://doi.org/10.2174/1570178614666170421164731
70 P Du, X Wang, C Xu, Y Gao. PseAAC-Builder: a cross-platform standalone program for generating various special Chou’s pseudo-amino acid compositions. Analytical Biochemistry, 2012, 425(2): 117–119
https://doi.org/10.1016/j.ab.2012.03.015
71 P Du, S Gu, Y Jiao. PseAAC-General: fast building various modes of general form of Chou’s pseudo-amino acid composition for large-scale protein datasets. International Journal of Molecular Sciences, 2014, 15(3): 3495–3506
https://doi.org/10.3390/ijms15033495
72 P F Du, W Zhao, Y Y Miao, L Y Wei, L Wang. UltraPse: a universal and extensible software platform for representing biological sequences. International Journal of Molecular Sciences, 2017, 18(11): 2400
https://doi.org/10.3390/ijms18112400
73 D S Cao, Q S Xu, Y Z Liang. Propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics, 2013, 29(7): 960–962
https://doi.org/10.1093/bioinformatics/btt072
74 B Liu, F Liu, X Wang, J Chen, L Fang, K C Chou. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Research, 2015, 43(W1): W65–W71
https://doi.org/10.1093/nar/gkv458
75 Z Chen, P Zhao, F Li, A Leier, T T Marquez-Lago, Y Wang, G I Webb, A I Smith, R J Daly, K C Chou, J Song. IFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics, 2018, 34(14): 2499–2502
https://doi.org/10.1093/bioinformatics/bty140
76 K C Chou. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Current Proteomics, 2009, 6(4): 262–274
https://doi.org/10.2174/157016409789973707
77 K C Chou. Some remarks on predicting multi-label attributes in molecular biosystems. Molecular BioSystems, 2013, 9(6): 1092–1100
https://doi.org/10.1039/c3mb25555g
78 K C Chou. Impacts of bioinformatics to medicinal chemistry. Medicinal Chemistry, 2015, 11(3): 218–234
https://doi.org/10.2174/1573406411666141229162834
79 P Du, Y Yu. SubMito-PSPCP: predicting protein submitochondrial locations by hybridizing positional specific physicochemical properties with pseudoamino acid compositions. Biomed Research International, 2013, 2013: 263829
https://doi.org/10.1155/2013/263829
80 Y Y Miao, W Zhao, G P Li, Y Gao, P F Du. Predicting endoplasmic reticulum resident proteins using auto-cross covariance transformation with a U-shaped residue weight-transfer function. Frontiers in Genetics, 2019, 10: 1231
https://doi.org/10.3389/fgene.2019.01231
81 P Du, T Li, X Wang, C Xu. SubChlo-GO: predicting protein subchloroplast locations with weighted gene ontology scores. Current Bioinformatics, 2013, 8(2): 193–199
https://doi.org/10.2174/1574893611308020007
82 K Carr, E Murray, E Armah, R L He, S S T Yau. A rapid method for characterization of protein relatedness using feature vectors. PLoS ONE, 2010, 5(3): e9550
https://doi.org/10.1371/journal.pone.0009550
83 I Dubchak, I Muchnik, C Mayor, I Dralyuk, S H Kim. Recognition of a protein fold in the context of the structural classification of proteins (SCOP) classification. Proteins, 1999, 35(4): 401–407
https://doi.org/10.1002/(SICI)1097-0134(19990601)35:4<401::AID-PROT3>3.0.CO;2-K
84 S F Altschul, T L Madden, A A Schäfer, J Zhang, Z Zhang, W Miller, D J Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389–3402
https://doi.org/10.1093/nar/25.17.3389
85 S P Shi, J D Qiu, X Y Sun, J H Huang, S Y Huang, S B Suo, RP Liang, L Zhang. Identify submitochondria and subchloroplast locations with pseudo amino acid composition: approach from the strategy of discrete wavelet transform feature extraction. Biochimica Et Biophysica Acta, 2011, 1813(3): 424–430
https://doi.org/10.1016/j.bbamcr.2011.01.011
86 S Kawashima, P Pokarowski, M Pokarowska, A Kolinski, T Katayama, M Kanehisa. AAindex: amino acid index database, progress report 2008. Nucleic Acids Research, 2008, 36(Database issue): D202–D205
https://doi.org/10.1093/nar/gkm998
87 X Li, X Wu, G Wu. Robust feature generation for protein subchloroplast location prediction with a weighted GO transfer model. Journal of Theoretical Biology, 2014, 347: 84–94
https://doi.org/10.1016/j.jtbi.2014.01.003
88 J Kyte, R F Doolittle. A simple method for displaying the hydropathic character of a protein. Journal ofMolecular Biology, 1982, 157(1): 105–132
https://doi.org/10.1016/0022-2836(82)90515-0
89 S Wan, M W Mak, S Y Kung. Transductive learning for multi-label protein subchloroplast localization prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(1): 212–224
https://doi.org/10.1109/TCBB.2016.2527657
90 S Wan, M W Mak, S Y Kung. Ensemble linear neighborhood propagation for predicting subchloroplast localization of multi-location proteins. Journal of Proteome Research, 2016, 15(12): 4755–4762
https://doi.org/10.1021/acs.jproteome.6b00686
91 K C Chou, H B Shen. Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers. Journal of Proteome Research, 2006, 5(8): 1888–1897
https://doi.org/10.1021/pr060167c
92 K C Chou, H B Shen. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochemical and Biophysical Research Communications, 2006, 347(1): 150–157
https://doi.org/10.1016/j.bbrc.2006.06.059
93 K Nakai, P Horton. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends in Biochemical Sciences, 1999, 24(1): 34–36
https://doi.org/10.1016/S0968-0004(98)01336-X
94 B Zybailov, H Rutschow, G Friso, A Rudella, O Emanuelsson, Q Sun, K J van Wijk. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE, 2008, 3(4): e1994
https://doi.org/10.1371/journal.pone.0001994
95 M A Andrade, S I O’Donoghue, B Rost. Adaptation of protein surfaces to subcellular location. Journal of Molecular Biology, 1998, 276(2): 517–525
https://doi.org/10.1006/jmbi.1997.1498
96 J Cedano, P Aloy, J A Péez-Pons, E Querol. Relation between amino acid composition and cellular location of proteins. Journal of Molecular Biology, 1997, 266(3): 594–600
https://doi.org/10.1006/jmbi.1996.0804
97 Z Lv, S Jin, H Ding, Q Zou. A random forest sub-golgi protein classifier optimized via dipeptide and amino acid composition features. Frontiers in Bioengineering and Biotechnology, 2019, 7: 215
https://doi.org/10.3389/fbioe.2019.00215
98 Y Jiao, P Du. Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quantitative Biology, 2016, 4(4): 320–330
https://doi.org/10.1007/s40484-016-0081-2
99 F G C Cabarle, R T A de la Cruz, D P P Cailipan, D Zhang, X Liu, X Zeng. On solutions and representations of spiking neural P systems with rules on synapses. Information Sciences, 2019, 501: 30–49
https://doi.org/10.1016/j.ins.2019.05.070
100 H Xu, W Zeng, D Zhang, X Zeng. MOEA/HD: a multiobjective evolutionary algorithm based on hierarchical decomposition. IEEE Transactions on Cybernetics, 2019, 49(2): 517–526
https://doi.org/10.1109/TCYB.2017.2779450
101 Q Zou, G Lin, X Jiang, X Liu, X Zeng. Sequence clustering in bioinformatics: an empirical study. Briefings in Bioinformatics, 2020, 21(1): 1–10
102 X Zeng, L Liu, L Lü, Q Zou. Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics, 2018, 34(14): 2425–2432
https://doi.org/10.1093/bioinformatics/bty112
103 X Zeng, W Lin, M Guo, Q Zou. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Computational Biology, 2017, 13(6): e1005420
https://doi.org/10.1371/journal.pcbi.1005420
[1] Article highlights Download
[1] Xia-an BI, Yiming XIE, Hao WU, Luyun XU. Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm[J]. Front. Comput. Sci., 2021, 15(6): 156903-.
[2] Yan-Ping SUN, Min-Ling ZHANG. Compositional metric learning for multi-label classification[J]. Front. Comput. Sci., 2021, 15(5): 155320-.
[3] Syed Farooq ALI, Muhammad Aamir KHAN, Ahmed Sohail ASLAM. Fingerprint matching, spoof and liveness detection: classification and literature review[J]. Front. Comput. Sci., 2021, 15(1): 151310-.
[4] Xu-Ying LIU, Sheng-Tao WANG, Min-Ling ZHANG. Transfer synthetic over-sampling for class-imbalance learning with limited minority class data[J]. Front. Comput. Sci., 2019, 13(5): 996-1009.
[5] Yu-Feng LI, De-Ming LIANG. Safe semi-supervised learning: a brief introduction[J]. Front. Comput. Sci., 2019, 13(4): 669-676.
[6] Wenhao ZHENG, Hongyu ZHOU, Ming LI, Jianxin WU. CodeAttention: translating source code to comments by exploiting the code constructs[J]. Front. Comput. Sci., 2019, 13(3): 565-578.
[7] Hao SHAO. Query by diverse committee in transfer active learning[J]. Front. Comput. Sci., 2019, 13(2): 280-291.
[8] Qingying SUN, Zhongqing WANG, Shoushan LI, Qiaoming ZHU, Guodong ZHOU. Stance detection via sentiment information and neural network model[J]. Front. Comput. Sci., 2019, 13(1): 127-138.
[9] Ruochen HUANG, Xin WEI, Liang ZHOU, Chaoping LV, Hao MENG, Jiefeng JIN. A survey of data-driven approach on multimedia QoE evaluation[J]. Front. Comput. Sci., 2018, 12(6): 1060-1075.
[10] Qiang LV, Yixin CHEN, Zhaorong LI, Zhicheng CUI, Ling CHEN, Xing ZHANG, Haihua SHEN. Achieving data-driven actionability by combining learning and planning[J]. Front. Comput. Sci., 2018, 12(5): 939-949.
[11] Ashish Kumar DWIVEDI, Anand TIRKEY, Santanu Kumar RATH. Software design pattern mining using classification-based techniques[J]. Front. Comput. Sci., 2018, 12(5): 908-922.
[12] Bo SUN, Haiyan CHEN, Jiandong WANG, Hua XIE. Evolutionary under-sampling based bagging ensemble method for imbalanced data classification[J]. Front. Comput. Sci., 2018, 12(2): 331-350.
[13] Min-Ling ZHANG, Yu-Kun LI, Xu-Ying LIU, Xin GENG. Binary relevance for multi-label learning: an overview[J]. Front. Comput. Sci., 2018, 12(2): 191-202.
[14] Zhongqing WANG, Shoushan LI, Guodong ZHOU. Personal summarization from profile networks[J]. Front. Comput. Sci., 2017, 11(6): 1085-1097.
[15] Qiang LU,Zhicheng CUI,Yixin CHEN,Xiaoping CHEN. Extracting optimal actionable plans from additive tree models[J]. Front. Comput. Sci., 2017, 11(1): 160-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed