Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2018, Vol. 12 Issue (3) : 479-493    https://doi.org/10.1007/s11704-016-5489-3
REVIEW ARTICLE
A survey on online feature selection with streaming features
Xuegang HU1, Peng ZHOU1, Peipei LI1, Jing WANG1, Xindong WU2()
1. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China
2. University of Louisiana at Lafayette, Lafayette LA 70504, USA
 Download: PDF(371 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the era of big data, the dimensionality of data is increasing dramatically in many domains. To deal with high dimensionality, online feature selection becomes critical in big data mining. Recently, online selection of dynamic features has received much attention. In situations where features arrive sequentially over time, we need to perform online feature selection upon feature arrivals. Meanwhile, considering grouped features, it is necessary to deal with features arriving by groups. To handle these challenges, some state-ofthe- art methods for online feature selection have been proposed. In this paper, we first give a brief review of traditional feature selection approaches. Then we discuss specific problems of online feature selection with feature streams in detail. A comprehensive review of existing online feature selection methods is presented by comparing with each other. Finally, we discuss several open issues in online feature selection.

Keywords big data      feature selection      online feature selection      feature stream     
Corresponding Author(s): Xindong WU   
Just Accepted Date: 05 September 2016   Online First Date: 22 September 2017    Issue Date: 02 May 2018
 Cite this article:   
Xuegang HU,Peng ZHOU,Peipei LI, et al. A survey on online feature selection with streaming features[J]. Front. Comput. Sci., 2018, 12(3): 479-493.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-5489-3
https://academic.hep.com.cn/fcs/EN/Y2018/V12/I3/479
1 Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1): 97–107
https://doi.org/10.1109/TKDE.2013.109
2 Franck M. How many photos are uploaded to flickr every day and month? 2015,
3 Pollack J R, Perou C M, Alizadeh A A, Eisen M B, Pergamenschikov A, Williams C F, Jeffrey S S, Botstein D, Brown P O. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet, 1999, 23(1): 41–46
https://doi.org/10.1038/12640
4 Wang D, Irani D, Pu C. Evolutionary study of Web spam: Webb spam Corpus 2011 versus Webb spam Corpus 2006. In: Proceedings of the 6th Annual ACM Symposium on Parallelism in Algorithms and Architectures. 2012, 40–49
https://doi.org/10.4108/icst.collaboratecom.2012.250689
5 Farahat A K, Elgohary A, Ghodsi A, Kamel M S. Greedy column subset selection for large-scale data sets. Knowledge and Information Systems, 2015, 45(1): 1–34
https://doi.org/10.1007/s10115-014-0801-8
6 Patra B K, Nandi S. Effective data summarization for hierarchical clustering in large datasets. Knowledge and Information Systems, 2015, 42(1): 1–20
https://doi.org/10.1007/s10115-013-0709-8
7 Hoi S, Wang J L, Zhao P L, Jin R. Online feature selection for mining big data. In: Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications. 2012
https://doi.org/10.1145/2351316.2351329
8 Guyon I, Elisseeff A. An introduction to variable and feature selection. The Journal of Machine Learning Research, 2003, 3: 1157–1182
9 Peng H C, Long F H, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and minredundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226–1238
https://doi.org/10.1109/TPAMI.2005.159
10 Wang M, Li H, Tao D C, Lu K, Wu X. Multimodal graph-based reranking for Web image search. IEEE Transactions on Image Processing, 2012, 21(11): 4649–4661
https://doi.org/10.1109/TIP.2012.2207397
11 Ding W, Stepinski T F, Mu Y, Bandeira L, Ricardo R, Wu Y, Lu Z, Cao T, Wu X. Sub-kilometer crater discovery with boosting and transfer learning. ACM Transactions on Intelligent Systems and Technology, 2011, 2(4): 39
https://doi.org/10.1145/1989734.1989743
12 Wu X D, Yu K, Wang H, Ding W. Online streaming feature selection. In: Proceedings of the 27th International Conference on Machine Learning. 2010, 1159–1166
13 Yu K, Wu X D, Ding W, Pei J. Towards scalable and accurate online feature selection for big data. In: Proceedings of IEEE International Conference on Data Mining. 2014, 660–669
https://doi.org/10.1109/ICDM.2014.63
14 Perkins S, Theiler J. Online feature selection using grafting. In: Proceedings of the 20th International Conference on Machine Learning. 2003, 592–599
15 Zhou J, Foster D P, Stine R A, Ungar L H. Streamwise feature selection. Journal of Machine Learning Research, 2006, 3(2): 1532–4435
16 Wu X D, Yu K, Ding W, Wang H, Zhu X Q. Online feature selection with streaming features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5): 1178–1192
https://doi.org/10.1109/TPAMI.2012.197
17 Li H G, Wu X D, Li Z, Ding W. Group feature selection with streaming features. In: Proceedings of the 13th IEEE International Conference on Data Mining. 2013, 1109–1114
https://doi.org/10.1109/ICDM.2013.137
18 Wang J, Wang M, Li P P, Liu L Q, Zhao Z Q, Hu X G, Wu X D. Online feature selection with group structure analysis. IEEE Transactions on Knowledge and Data Engineering, 2015, 27: 3029–3041
https://doi.org/10.1109/TKDE.2015.2441716
19 Zhang K H, Zhang L, Yang M H. Real-time object tracking via online discriminative feature selection. IEEE Transactions on Image Processing, 2013, 22(12): 4664–4677
https://doi.org/10.1109/TIP.2013.2277800
20 Collins R T, Liu Y X, Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631–1643
https://doi.org/10.1109/TPAMI.2005.205
21 Carvalho V R, Cohen W W. Single-pass online learning: Performance, voting schemes and online feature selection. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2006
https://doi.org/10.1145/1150402.1150466
22 Jiang W, Er G H, Dai Q H, Gu J W. Similarity-based online feature selection in content-based image retrieval. IEEE Transactions on Image Processing, 2006, 15(3): 702–712
https://doi.org/10.1109/TIP.2005.863105
23 Stefanowski J, Cuzzocrea A, Slezak D. Processing and mining complex data streams. Information Sciences, 2014, 285: 63–65
https://doi.org/10.1016/j.ins.2014.08.023
24 Xiao J, Xiao Y, Huang A Q, Liu D H, Wang S Y. Feature-selectionbased dynamic transfer ensemble model for customer churn prediction. Knowledge and Information Systems, 2015, 43(1): 29–51
https://doi.org/10.1007/s10115-013-0722-y
25 Zhou T C, Lyu M R T, King I, Lou J. Learning to suggest questions in social media. Knowledge and Information Systems, 2015, 43(2): 389–416
https://doi.org/10.1007/s10115-014-0737-z
26 Liu H, Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491–502
https://doi.org/10.1109/TKDE.2005.66
27 Song L, Smola A, Gretton A, Borgwardt K M, Bedo J. Supervised feature selection via dependence estimation. In: Proceedings of the 24th International Conference on Machine Learning. 2007
https://doi.org/10.1145/1273496.1273600
28 Mitra P, Murthy C, Pal S K. Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 301–312
https://doi.org/10.1109/34.990133
29 Yu G X, Zhang G J, Zhang Z L, Yu Z W, Deng L. Semi-supervised classification based on subspace sparse representation. Knowledge and Information Systems, 2015, 43(1): 81–101
https://doi.org/10.1007/s10115-013-0702-2
30 Zhao Z, Liu H. Semi-supervised feature selection via spectral analysis. In: Proceedings of SIAM International Conference on Data Mining. 2007, 641–647
https://doi.org/10.1137/1.9781611972771.75
31 Liu H, Motoda H. Computational Methods of Feature Selection. Boca Raton, FL: Chapman and Hall/CRC Press, 2007
32 Yu L, Liu H. Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proceedings of the 20th International Conference on Machine Learning. 2003, 601–608
33 He X F, Cai D, Niyogi P. Laplacian score for feature selection. Advances in Neural Information Processing Systems, 2005, 17: 507–514
34 Gu Q Q, Li Z H, Han J W. Generalized fisher score for feature selection. Statistics, 2012
35 Zhang D Q, Chen S C, Zhou Z H. Constraint score: a new filter method for feature selection with pairwise constraints. Pattern Recognition, 2008, 41(5): 1440–1451
https://doi.org/10.1016/j.patcog.2007.10.009
36 Sun D, Zhang D Q. Bagging constraint score for feature selection with pairwise constraints. Pattern Recognition, 2010, 43(6): 2106–2118
https://doi.org/10.1016/j.patcog.2009.12.011
37 Liu M X, Zhang D Q. Sparsity score: a novel graph preserving feature selection method. International Journal of Pattern Recognition and Artificial Intelligence, 2014, 28(4): 1450009
https://doi.org/10.1142/S0218001414500098
38 Liu M X, Miao L S, Zhang D Q. Two-stage cost-sensitive learning for software defect prediction. IEEE Transactions on Reliability, 2014, 63(2): 676–686
https://doi.org/10.1109/TR.2014.2316951
39 Liu M X, Zhang D Q. Pairwise constraint-guided sparse learning for feature selection. IEEE Transactions on Cybernetics, 2015
40 Wei H L, Billings S A. Feature subset selection and ranking for data dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 162–166
https://doi.org/10.1109/TPAMI.2007.250607
41 Yu L, Liu H. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 2004, 5(1): 1205–1224
42 Kwak N, Choi C H. Input feature selection by mutual information based on parzen window. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667–1671
https://doi.org/10.1109/TPAMI.2002.1114861
43 Kira K, Rendell L A. The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the 9th National Conference on Artificial Intelligence. 1992, 129–134
44 Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RreliefF. Machine Learning, 2003, 53(1-2): 23–69
https://doi.org/10.1023/A:1025667309714
45 Almuallim H, Dietterich T G. Learning with many irrelevant features. In: Proceedings of the 9th National Conference on Artificial Intelligence. 1992, 547–552
46 Liu H, Setiono R. A probabilistic approach to feature selection–a filter solution. In: Proceedings of International Conference on Machine Learning. 1996, 319–327
47 Kohavi R, Johnb G H. Wrappers for feature subset selection. Artificial Intelligence, 2013, 97(1): 273–324
48 Liu H. Feature Selection for Knowledge Discovery and Data Mining. Boston: Kluwer Academic Publishers, 1998
https://doi.org/10.1007/978-1-4615-5689-3
49 Tang J L, Alelyani S, Liu H. Feature selection for classification: a review. Data Classification: Algorithms and Applications, 2014, 37
50 Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 1996, 267–288
51 Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. The Annals of Statistics, 2004, 32(2): 407–451
https://doi.org/10.1214/009053604000000067
52 Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(2): 301–320
https://doi.org/10.1111/j.1467-9868.2005.00503.x
53 Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 2006, 101(476): 1418–1429
https://doi.org/10.1198/016214506000000735
54 Friedman J, Hastie T, Tibshirani R. A note on the group lasso and a sparse group lasso. Mathematics, 1910, (1)
55 Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistics Society B, 2006, 68(1): 49–67
https://doi.org/10.1111/j.1467-9868.2005.00532.x
56 Wang J L, Zhao P L, Hoi S C, Jing R. Online feature selection and its applications. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(3): 698–710
https://doi.org/10.1109/TKDE.2013.32
57 Yu K, Wu X D, Ding W, Pei J. Scalable and accurate online feature selection for big data. 2016, arXiv: 1511.092632
58 Yu K, Ding W, Wu X D. Lofs: library of online streaming feature selection. Knowledge Based Systems, 2016
https://doi.org/10.1016/j.knosys.2016.08.026
[1] Zhihan JIANG, Yan LIU, Xiaoliang FAN, Cheng WANG, Jonathan LI, Longbiao CHEN. Understanding urban structures and crowd dynamics leveraging large-scale vehicle mobility data[J]. Front. Comput. Sci., 2020, 14(5): 145310-.
[2] Lei CHEN, Kai SHAO, Xianzhong LONG, Lingsheng WANG. Multi-task regression learning for survival analysis via prior information guided transductive matrix completion[J]. Front. Comput. Sci., 2020, 14(5): 145312-.
[3] Parnika PARANJAPE, Meera DHABU, Parag DESHPANDE. A novel classifier for multivariate instance using graph class signatures[J]. Front. Comput. Sci., 2020, 14(4): 144307-.
[4] Meifan ZHANG, Hongzhi WANG, Jianzhong LI, Hong GAO. Diversification on big data in query processing[J]. Front. Comput. Sci., 2020, 14(4): 144607-.
[5] Xingyue CHEN, Tao SHANG, Feng ZHANG, Jianwei LIU, Zhenyu GUAN. Dynamic data auditing scheme for big data storage[J]. Front. Comput. Sci., 2020, 14(1): 219-229.
[6] Samuel IRVING, Bin LI, Shaoming CHEN, Lu PENG, Weihua ZHANG, Lide DUAN. Computer comparisons in the presence of performance variation[J]. Front. Comput. Sci., 2020, 14(1): 21-41.
[7] Farid FEYZI, Saeed PARSA. Inforence: effective fault localization based on information-theoretic analysis and statistical causal inference[J]. Front. Comput. Sci., 2019, 13(4): 735-759.
[8] Nannan XIE, Xing WANG, Wei WANG, Jiqiang LIU. Fingerprinting Android malware families[J]. Front. Comput. Sci., 2019, 13(3): 637-646.
[9] Min NIE, Lei YANG, Jun SUN, Han SU, Hu XIA, Defu LIAN, Kai YAN. Advanced forecasting of career choices for college students based on campus big data[J]. Front. Comput. Sci., 2018, 12(3): 494-503.
[10] Wuyang JU,Jianxin LI,Weiren YU,Richong ZHANG. iGraph: an incremental data processing system for dynamic graph[J]. Front. Comput. Sci., 2016, 10(3): 462-476.
[11] Shuai MA,Jia LI,Chunming HU,Xuelian LIN,Jinpeng HUAI. Big graph search: challenges and techniques[J]. Front. Comput. Sci., 2016, 10(3): 387-398.
[12] Djamal ZIANI. Feature selection on probabilistic symbolic objects[J]. Front. Comput. Sci., 2014, 8(6): 933-947.
[13] Zhisong PAN,Zhantao DENG,Yibing WANG,Yanyan ZHANG. Dimensionality reduction via kernel sparse representation[J]. Front. Comput. Sci., 2014, 8(5): 807-815.
[14] Jinchuan CHEN, Yueguo CHEN, Xiaoyong DU, Cuiping LI, Jiaheng LU, Suyun ZHAO, Xuan ZHOU. Big data challenge: a data management perspective[J]. Front Comput Sci, 2013, 7(2): 157-164.
[15] Ling LIU. Computing infrastructure for big data processing[J]. Front Comput Sci, 2013, 7(2): 165-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed