Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    0, Vol. Issue () : 165-170    https://doi.org/10.1007/s11704-013-3900-x
RESEARCH ARTICLE
Computing infrastructure for big data processing
Ling LIU()
Distributed Data Intensive Systems Lab, School of Computer Science, Georgia Institute of Technology, Atlanta 30332, USA
 Download: PDF(282 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With computing systems undergone a fundamental transformation from single-processor devices at the turn of the century to the ubiquitous and networked devices and the warehouse-scale computing via the cloud, the parallelism has become ubiquitous at many levels. At micro level, parallelisms are being explored from the underlying circuits, to pipelining and instruction level parallelism on multi-cores or many cores on a chip as well as in a machine. From macro level, parallelisms are being promoted from multiple machines on a rack, many racks in a data center, to the globally shared infrastructure of the Internet.With the push of big data, we are entering a new era of parallel computing driven by novel and ground breaking research innovation on elastic parallelism and scalability. In this paper, we will give an overview of computing infrastructure for big data processing, focusing on architectural, storage and networking challenges of supporting big data paper.We will briefly discuss emerging computing infrastructure and technologies that are promising for improving data parallelism, task parallelism and encouraging vertical and horizontal computation parallelism.

Keywords big data      cloud computing      data analytics      elastic scalability      heterogeneous computing      GPU      PCM      big data processing     
Corresponding Author(s): LIU Ling,Email:lingliu@cc.gatech.edu   
Issue Date: 01 April 2013
 Cite this article:   
Ling LIU. Computing infrastructure for big data processing[J]. Front Comput Sci, 0, (): 165-170.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-3900-x
https://academic.hep.com.cn/fcs/EN/Y0/V/I/165
1 Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers A H. Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute , 2011, 1-137
2 Graphics Processing Unit (GPU). http://en.wikipedia.org/wiki/Graphics_processing_unit
3 Kim N S, Draper S C, Zhou S T, Katariya S, Ghasemi H R, Park T. Analyzing the impact of joint optimization of cell size, redundancy, and ECC on low-voltage SRAM array total area. IEEE Transactions on Very Large Scale Integration (VLSI) Systems , 2012, 20(12): 2333-2337
4 Gilani S Z, Kim N S, Schulte M J. Power-efficient computing for compute-intensive GPGPU applications. In: Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques . 2012, 445-446
doi: 10.1145/2370816.2370888
5 Mattson T. The future of many core computing: a tale of two processors. Intel Labs Report . 2010
6 Borkar S. Thousand core chips: a technology perspective. In: Proceedings of the 44th Annual Design Automation Conference . 2007, 746-749
doi: 10.1145/1278480.1278667
7 Phase-change memory (pcm). http://en.wikipedia.org/wiki/Phasechange_memory
8 21st century computer architecture. http://cra.org/ccc/docs/init/ 21stcenturyarchitecturewhitepaper.pdf
9 Malewicz G, Austern M H, Bik A J, Dehnert J C, Horn I, Leiser N, Czajkowski G. Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 International Conference on Management of Data . 2010, 135-146
10 Kyr?l? A, Blelloch G, Guestrin C. GraphChi: large-scale graph computation on just a PC. In: Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation , 31-46
11 Altavista web page hyperlink connectivity graph. 2012. http:// webgraph. sandbox.yahoo.com
12 Guo Y, Pan Z, Heflin J. LUBM: a benchmark for OWL knowledge base systems. Web Semantics: Science, Services and Agents on the World Wide Web , 2005, 3(2): 158-182
doi: 10.1016/j.websem.2005.06.005
13 Prud’Hommeaux E, Seaborne A. SPARQL query language for RDF. W3C Recommendation , 2008
[1] Yulin HE, Jiaqi CHEN, Jiaxing SHEN, Philippe FOURNIER-VIGER, Joshua Zhexue HUANG. Density estimation-based method to determine sample size for random sample partition of big data[J]. Front. Comput. Sci., 2024, 18(5): 185322-.
[2] Hongru GAO, Xiaofei LIAO, Zhiyuan SHAO, Kexin LI, Jiajie CHEN, Hai JIN. A survey on dynamic graph processing on GPUs: concepts, terminologies and systems[J]. Front. Comput. Sci., 2024, 18(4): 184106-.
[3] Kun WANG, Song WU, Shengbang LI, Zhuo HUANG, Hao FAN, Chen YU, Hai JIN. Precise control of page cache for containers[J]. Front. Comput. Sci., 2024, 18(2): 182102-.
[4] Ashish SINGH, Abhinav KUMAR, Suyel NAMASUDRA. DNACDS: Cloud IoE big data security and accessing scheme based on DNA cryptography[J]. Front. Comput. Sci., 2024, 18(1): 181801-.
[5] Xingxin LI, Youwen ZHU, Rui XU, Jian WANG, Yushu ZHANG. Indexing dynamic encrypted database in cloud for efficient secure k-nearest neighbor query[J]. Front. Comput. Sci., 2024, 18(1): 181803-.
[6] Jianwei LI, Xiaoming WANG, Qingqing GAN. SEOT: Secure dynamic searchable encryption with outsourced ownership transfer[J]. Front. Comput. Sci., 2023, 17(5): 175812-.
[7] Jialun WANG, Wenhao PANG, Chuliang WENG, Aoying ZHOU. D-Cubicle: boosting data transfer dynamically for large-scale analytical queries in single-GPU systems[J]. Front. Comput. Sci., 2023, 17(4): 174610-.
[8] Muazzam MAQSOOD, Sadaf YASMIN, Saira GILLANI, Maryam BUKHARI, Seungmin RHO, Sang-Soo YEO. An efficient deep learning-assisted person re-identification solution for intelligent video surveillance in smart cities[J]. Front. Comput. Sci., 2023, 17(4): 174329-.
[9] Sedigheh KHOSHNEVIS. A search-based identification of variable microservices for enterprise SaaS[J]. Front. Comput. Sci., 2023, 17(3): 173208-.
[10] Changbo KE, Fu XIAO, Zhiqiu HUANG, Fangxiong XIAO. A user requirements-oriented privacy policy self-adaption scheme in cloud computing[J]. Front. Comput. Sci., 2023, 17(2): 172203-.
[11] Rong ZENG, Xiaofeng HOU, Lu ZHANG, Chao LI, Wenli ZHENG, Minyi GUO. Performance optimization for cloud computing systems in the microservice era: state-of-the-art and research opportunities[J]. Front. Comput. Sci., 2022, 16(6): 166106-.
[12] Zhengxiong HOU, Hong SHEN, Xingshe ZHOU, Jianhua GU, Yunlan WANG, Tianhai ZHAO. Prediction of job characteristics for intelligent resource allocation in HPC systems: a survey and future directions[J]. Front. Comput. Sci., 2022, 16(5): 165107-.
[13] Xin YOU, Hailong YANG, Zhongzhi LUAN, Depei QIAN. Accelerating the cryo-EM structure determination in RELION on GPU cluster[J]. Front. Comput. Sci., 2022, 16(3): 163102-.
[14] Dunbo ZHANG, Chaoyang JIA, Li SHEN. Compressed page walk cache[J]. Front. Comput. Sci., 2022, 16(3): 163104-.
[15] Zhangjie FU, Yan WANG, Xingming SUN, Xiaosong ZHANG. Semantic and secure search over encrypted outsourcing cloud based on BERT[J]. Front. Comput. Sci., 2022, 16(2): 162802-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed