Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2022, Vol. 16 Issue (3) : 163813    https://doi.org/10.1007/s11704-020-0115-9
RESEARCH ARTICLE
SCENERY: a lightweight block cipher based on Feistel structure
Jingya FENG1,2, Lang LI1,2,3()
1. Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang 421002, China
2. College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
3. College of Computer Science and Technology, Hengyang Normal University, Hengyang 421002, China
 Download: PDF(2691 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we propose a new lightweight block cipher called SCENERY. The main purpose of SCENERY design applies to hardware and software platforms. SCENERY is a 64-bit block cipher supporting 80-bit keys, and its data processing consists of 28 rounds. The round function of SCENERY consists of 8 4 × 4 S-boxes in parallel and a 32 × 32 binary matrix, and we can implement SCENERY with some basic logic instructions. The hardware implementation of SCENERY only requires 1438 GE based on 0.18 um CMOS technology, and the software implementation of encrypting or decrypting a block takes approximately 1516 clock cycles on 8-bit microcontrollers and 364 clock cycles on 64-bit processors. Compared with other encryption algorithms, the performance of SCENERY is well balanced for both hardware and software. By the security analyses, SCENERY can achieve enough security margin against known attacks, such as differential cryptanalysis, linear cryptanalysis, impossible differential cryptanalysis and related-key attacks.

Keywords lightweight block cipher      feistel structure      cryptanalysis      internet of things     
Corresponding Author(s): Lang LI   
Just Accepted Date: 29 September 2020   Issue Date: 09 November 2021
 Cite this article:   
Jingya FENG,Lang LI. SCENERY: a lightweight block cipher based on Feistel structure[J]. Front. Comput. Sci., 2022, 16(3): 163813.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-020-0115-9
https://academic.hep.com.cn/fcs/EN/Y2022/V16/I3/163813
Notations Descriptions
P 64-bit plaintext
C 64-bit ciphertext
K 80-bit master key or round key
Li, Ri 32-bit L and R in the i round
SKi 32-bit round sub-key SK in the i round
F function F
Nr round number
S 4×4 S-box
Mix MixColumns
|| concatenation of two binary strings
bitwise exclusive-OR operation
<<< left circular shift operation
Tab.1  Notations of SCENERY
Fig.1  The encryption of SCENERY
Algorithm 1: SCENERY encryption routine
Input: P(64), K(80)
Output: C(64)
1: P(64) P0(8)||P1(8)||P2(8)||P3(8)||P4(8)||P5(8)||P6(8)||P7(8)
2: P0(8)||P1(8)||P2(8)||P3(8) L1(32),
P4(8)||P5(8)||P6(8)||P7(8) R1(32)
3: GenrateKey (K(80), SK)
4: for i=1 to Nr do the following
5: Ri+1(32) Li(32),
Li+1(32) Ri(32)F(Li(32), SKi(32))
6: end for
7: P0(8)||P1(8)||P2(8)||P3(8) Ri(32),
P4(8)||P5(8)||P6(8)||P7(8) Li(32)
8: C(64) P(64)
Tab.2  The encryption routine of SCENERY
Fig.2  The SubColumns of SCENERY
x S[x] x S[x] x S[x] x S[x]
0 6 4 1 8 B C 8
1 5 5 E 9 0 D F
2 C 6 7 A 3 E 4
3 A 7 9 B D F 2
Tab.3  4-bit S-box in hexadecimal form
Fig.3  The M0 and M1 of SCENERY
Rounds c Avg. AE Avg. SAC
4 1 31.9030 0.9997
5 1 32.0014 0.9997
6 1 32.0015 0.9996
7 1 32.0006 0.9997
28 1 32.0011 0.9996
Tab.4  Results on different rounds of SCENERY
Fig.4  
Fig.5  Analysis of avalanche effect of a specific plaintext
Fig.6  Analysis of avalanche effect of a specific key
Ciphers D/LC Rounds Ref.
123456789
PRESENT-80 DC 12461012141618 [4]
LC 123456789
Twine DC 01234681114 [5]
LC 01234681114
RECTANGLE DC 123468111314 [4]
LC 123468101214
LBlock DC 01234681114 [6]
LC 01235681114
GIFT DC 1235710131618 [4]
LC 123579121518
LED DC 1521252630465051 [18]
LC 1521252630465051
Loong DC 81624324048566472 [18]
LC 81624324048566472
SCENERY DC 0124611152025 this work
LC 0124611141924
Tab.5  Lower bounds for numbers of differential and linear active S-boxes
Fig.7  The datapath of the round-based SCENERY
Ciphers Structure latency Block size Key size Area/GE Speed (kbps@100 KHz) Logic process/um Ref.
SFN SPN 32 64 96 1877 200* 0.18 [1]
PRESENT SPN 32 64 80 1570 200* 0.18 [8]
QTL GFN 16 64 64 1026 200 0.18 [1]
RECTANGLE SPN 25 64 80 1600 246 0.13 [2]
KLEIN SPN 16 64 80 2202 400* 0.18 [7]
LBock Feistel 32 64 80 1320 200* 0.18 [6]
Twine GFN 36 64 80 1503 178.78* 0.09 [5]
LED SPN 32 64 80 1,040 3.4 0.18 [22]
Piccolo GFN 25 64 80 1496 237.04 0.13 [2]
SIMON Feistel 44 64 128 1751 145.45* 0.13 [23]
SPECK Feistel 27 64 128 2014 237.04* 0.13 [23]
Midori SPN 16 64 128 1542 400* 0.09 [1]
SKINNY SPN 36 64 128 1696 177.78* 0.18 [24]
SCENERY Feistel 28 64 80 1438 228.57* 0.18 This work
Tab.6  Comparison of lightweight block cipher implementations
Module (round function) GE
Data Register 384
Key Xor 85.44
S-box layer 192
Mixcolumn 128.16
32-bit Xor 85.44
KS: Key Register 480
KS: SubCell 48
KS: Constants Xor 10.56
Control logic and other counters 24
Total 1437.6
Tab.7  Area requirement of SCENERY
Ciphers Block size Key size One block enc. Ref.
LED 64 64 65 [2]
Piccolo 64 80 67.1 [2]
PRESENT 64 80 62 [2]
RECTANGLE 64 80 30.5 [2]
TWINE 64 80 52.8 [5]
SIMON 64 128 28.7 [3]
SPECK 64 128 10.1 [3]
SCENERY 64 80 45.5 This work
Tab.8  Comparison of software performance
Components Instruction Flash/bytes Time/cycles
SubColumns MOV t0, x2 2 1
EOR x2, x1 2 1
COM x1 2 1
MOV t1, x0 2 1
AND x0, x1 2 1
OR x1, x3 2 1
EOR x3, t0 2 1
EOR x0, x3 2 1
EOR x1, t1 2 1
AND x3, x1 2 1
EOR x3, x2 2 1
OR x2, x0 2 1
EOR x2, t1 2 1
EOR x1, t0 2 1
MixColumns MOVW t0, x1 2 1
SWAP x0 2 1
EOR t0, x0 2 1
LSL t0 2 1
ADC t0, zero 2 1
LSL x0 2 1
ADC x0, zero 2 1
EOR x0, t0 2 1
EOR x1, t0 2 1
SWAP x3 2 1
LSL t1 2 1
ADC t1, zero 2 1
EOR t1, x3 2 1
EOR x2, t1 2 1
ROL x3 2 1
ADC x3, zero 2 1
EOR x3, t1 2 1
Tab.9  The Implementation of components on AVR
Ciphers Block/Key size Enc (cycles) Ref.
SIMON 64/128 1969 [26]
SPECK 64/128 1141 [26]
SKINNY 64/128 2551 [26]
RECTANGLE 64/80 1823 [26]
SCENERY 64/80 1516 This work
Tab.10  Comparison of software implementations for lightweight block ciphers on AVR
plaintext: 0000-0000-0000-0000
key: 0000-0000-0000-0000
ciphertext: 82EF-EDBA-3336-CD92
plaintext: 0000-0000-0000-0000
key: FFFF-FFFF-FFFF-FFFF
ciphertext: CE6E-5005-CF04-E426
plaintext: FFFF-FFFF-FFFF-FFFF
key: 0000-0000-0000-0000
ciphertext: 480B-5421-D561-1B60
plaintext: FFFF-FFFF-FFFF-FFFF
key: FFFF-FFFF-FFFF-FFFF
ciphertext: F752-C84E-8412-4C59
  
1 L Li , B Liu , Y Zhou , Y Zou . SFN: A new lightweight block cipher. Journal of Microprocessors Microsyst, 2018, 60 : 138– 150
2 W Zhang , Z Bao , D Lin , V Rijmen , B Yang , V Ingrid . RECTANGLE: A bit-slice lightweight block cipher suitable for multiple platforms. Journal of Science China (Information Sciences), 2015, 58( 12): 89– 103
3 R Beaulieu , D Shors , J Smith , S Treatman-Clark , B Weeks , L Wingers . The Simon And Speck Families of Lightweight Block Ciphers. Journal of IACR Cryptol. Eprint Arch, 2013, 2013 : 404– 449
4 Banik S, Pandey S K, Peyrin T, Sasaki Y, Sim S M, Todo Y. GIFT: A small present. In: Proceedings of International Conference on Cryptographic Hardware and Embedded Systems. 2017, 321−345
5 Kobayashi E, Suzaki T, Minematsu K, Morioka S. TWINE: A lightweight block cipher for multiple platforms. In: Proceedings of the conference on Selected Areas in Cryptography. 2012, 339−354
6 Wu W, Zhang L. LBlock: A lightweight block cipher. In: Proceedings of International Conference on Applied Cryptography and Network Security. 2011, 327−344
7 Gong Z, Nikova S, Law Y W. KLEIN: A new family of lightweight block ciphers. In: Proceedings of Workshop on RFID Security. 2011, 1−18
8 Bogdanov A, Knudsen L R, Leander G, Paar C, Poschmann A, Robshaw M J B, Seurin Y, Vikkelsoe C. PRESENT: An ultra lightweight block cipher. In: Proceedings of International Workshop on Cryptographic Hardware and Embedded Systems. 2007, 450−466
9 Biham E. A fast new DES implementation in software. In: Proceedings of International Workshop on Fast Software Encryption. 1997, 260−270
10 Saberi I, Shojaie B, Salleh M, Enhanced Key Expansion for AES-256 by using Even-Odd method. In: Proceedings of International Conference on Research and Innovation in Information Systems. 2011, 1−5
11 J B Kam , G I Davida . Structured Design of Substitution-Permutation Encryption Networks. Journal of IEEE Transactions on Computers, 1979, C-28( 10): 747– 753
12 H Feistel . Cryptography and Computer Privacy. Journal of Scientific American - SCI AMER, 1973, 228( 5): 15– 23
13 Webster A F, Tavares S E, On the Design of S-Boxes. In: Proceedings of Lecture notes in computer sciences; 218 on Advances in cryptology—CRYPTO 85. 1986, 523−534
14 Motara Y M, Irwin B. SHA-1 and the Strict Avalanche Criterion. In: Proceedings of Information Security for South Africa Conference. 2016, 35−40
15 Knudsen L R. Practically secure Feistel ciphers. In: Proceedings of International Workshop on Fast Software Encryption. 1993, 211−221
16 Mouha N, Wang Q, Gu D, Preneel B. Differential and Linear Cryptanalysis Using Mixed-Integer Linear Programming. In: Proceedings of International Conference on Information Security and Cryptology. 2011, 57−76
17 Sun S, Hu L, Wang P, Qiao K, Ma X, Song L. Automatic Security Evaluation and (Related-key) Differential Characteristic Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-oriented Block Ciphers. In: Proceedings of International Conference on the Theory and Application of Cryptology and Information Security. 2014, 158−178
18 B T Liu , L Li , R X Wu , M M Xie , Q P Li . Loong: A family of Involutional lightweight Block Cipher Based on SPN Structure. Journal of IEEE Access, 2019, 7 : 136023– 136035
19 Sasaki Y, Todo Y. New Impossible Differential Search Tool from Design and Cryptanalysis Aspects. In: Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Technique. 2017, 185−215
20 E Biham . New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology, 1994, 7( 4): 229– 246
21 Biryukov A, Wagner D. Slide Attacks. In: Proceedings of International Workshop on Fast Software Encryption. 1999, 245−259
22 Guo J, Peyrin T, Poschmann A, Robshaw M. The LED block cipher. In: Proceedings of International Workshop on Cryptographic Hardware and Embedded Systems. 2011, 326−341
23 R Beaulieu , D Shors , J Smith , S Treatman-Clark , B Weeks , L Wingers . SIMON and SPECK: Block Ciphers for the Internet of Things. Journal of IACR Cryptology ePrint Archive. 2015, 2015, 585– 599
24 Beierle C, Jean J, Kölbl S, Leander G, Moradi A, Peyrin, T, Sasaki Y, Sasdrich P, Sim S M. The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In: Proceedings of Annual International Cryptology Conference. 2016, 123−153
25 Dinu D, Biryukov A, Großschädl J, Khovratovich D, Corre Y L, Perrin L P. FELICS–Fair Evaluation of Lightweight Cryptographic Systems. In: Proceedings of NIST Workshop on Lightweight Cryptography, 2015
26 P Luo , W Zhang , Z Bao . The Implementation and Optimization of Lightweight Block Cipher RECTANGLE based on FELICS. Journal of Cyber Security, 2017, 2( 3): 36– 47
[1] Yuanrun FANG, Fu XIAO, Biyun SHENG, Letian SHA, Lijuan SUN. Cross-scene passive human activity recognition using commodity WiFi[J]. Front. Comput. Sci., 2022, 16(1): 161502-.
[2] Xinyu TONG, Ziao YU, Xiaohua TIAN, Houdong GE, Xinbing WANG. Improving accuracy of automatic optical inspection with machine learning[J]. Front. Comput. Sci., 2022, 16(1): 161310-.
[3] Edje E. ABEL, Muhammad Shafie Abd LATIFF. The utilization of algorithms for cloud internet of things application domains: a review[J]. Front. Comput. Sci., 2021, 15(3): 153502-.
[4] Hao LIN, Guannan LIU, Fengzhi LI, Yuan ZUO. Where to go? Predicting next location in IoT environment[J]. Front. Comput. Sci., 2021, 15(1): 151306-.
[5] Yu ZHANG, Yuxing HAN, Jiangtao WEN. SMER: a secure method of exchanging resources in heterogeneous internet of things[J]. Front. Comput. Sci., 2019, 13(6): 1198-1209.
[6] Xuan LI, Jin LI, Siuming YIU, Chongzhi GAO, Jinbo XIONG. Privacy-preserving edge-assisted image retrieval and classification in IoT[J]. Front. Comput. Sci., 2019, 13(5): 1136-1147.
[7] Chunjie ZHOU, Xiaoling WANG, Zhiwang ZHANG, Zhenxing ZHANG, Haiping QU. The time model for event processing in internet of things[J]. Front. Comput. Sci., 2019, 13(3): 471-488.
[8] Zheng HE, Kunpeng BAI, Dongdai LIN, Chuankun WU. Unification of identifiers in the Sea-Cloud system[J]. Front. Comput. Sci., 2018, 12(4): 749-762.
[9] Wei FAN, Zhengyong CHEN, Zhang XIONG, Hui CHEN. The Internet of data: a new idea to extend the IOT in the digital world[J]. Front Comput Sci, 2012, 6(6): 660-667.
[10] Wenfeng YANG, Yupu HU. A resynchronization attack on stream ciphers filtered by Maiorana-McFarland functions[J]. Front Comput Sci Chin, 2011, 5(2): 158-162.
[11] Lei CHEN, Mitchell TSENG, Xiang LIAN, . Development of foundation models for Internet of Things[J]. Front. Comput. Sci., 2010, 4(3): 376-385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed