Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2023, Vol. 17 Issue (5) : 175905    https://doi.org/10.1007/s11704-022-1639-y
RESEARCH ARTICLE
Three-dimensional quantum wavelet transforms
Haisheng LI(), Guiqiong LI(), Haiying XIA()
College of Electronic and Information Engineering, Guangxi Normal University, Guilin 541004, China
 Download: PDF(13043 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Wavelet transform is being widely used in the field of information processing. One-dimension and two-dimension quantum wavelet transforms have been investigated as important tool algorithms. However, three-dimensional quantum wavelet transforms have not been reported. This paper proposes a multi-level three-dimensional quantum wavelet transform theory to implement the wavelet transform for quantum videos. Then, we construct the iterative formulas for the multi-level three-dimensional Haar and Daubechies D4 quantum wavelet transforms, respectively. Next, we design quantum circuits of the two wavelet transforms using iterative methods. Complexity analysis shows that the proposed wavelet transforms offer exponential speed-up over their classical counterparts. Finally, the proposed quantum wavelet transforms are selected to realize quantum video compression as a primary application. Simulation results reveal that the proposed wavelet transforms have better compression performance for quantum videos than two-dimension quantum wavelet transforms.

Keywords wavelet transform      wavelet video coding      quantum wavelet transform      quantum information processing      quantum image processing     
Corresponding Author(s): Haisheng LI   
Just Accepted Date: 20 September 2022   Issue Date: 29 December 2022
 Cite this article:   
Haisheng LI,Guiqiong LI,Haiying XIA. Three-dimensional quantum wavelet transforms[J]. Front. Comput. Sci., 2023, 17(5): 175905.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-022-1639-y
https://academic.hep.com.cn/fcs/EN/Y2023/V17/I5/175905
Fig.1  Notations for some basic gates
Fig.2  Quantum controlled-NOT gates. Control quantum bits can be 0 (indicated by white dots) or 1 (indicated by black dots)
Fig.3  The implementation circuits of P2n?1,2 and P2,2n?1. Circuits in the dashed boxes in (a) and (b) realize P2n?2,2 and P2,2n?2, respectively
Fig.4  The circuits for the single-level 1D-HQWT and its inverse. (a) W2nH; (b) (W2nH)?1
Fig.5  The circuits for the single-level 1D-D4QWT and its inverse. (a) D2np; (b) F2n; (c) (D2np)?1; (d) F2n?1
Fig.6  The decomposition scheme of the classical 2-level 3D wavelet transform
Fig.7  Circuits for Tn,m,hj and Rn,m,hj and their inverses. (a) Tn,m,hj; (b) Rn,m,hj; (c) (Tn,m,hj)?1; (d) (Rn,m,hj)?1
Fig.8  Circuits for the i-level 3D-QWT. (a) Dn,m,hj; (b) Ln,m,hj; (c) The i-level 3D-QWT
Fig.9  The implementation circuits for the multi-level 3D-HQWT. (a) Hn,m,hi,i2; (b) Hn?i+1,m?i+1,h?i+11
Fig.10  The implementation circuits for the inverse of the multi-level 3D-HQWT. (a) (Hn,m,hi)?1,i2; (b) (Hn?i+1,m?i+1,h?i+11)?1
Fig.11  The circuit for H4,5,53. The circuit in the dashed box implements H3,4,42
Fig.12  The implementation circuits for the multi-level 3D-D4QWT. (a) Fn,m,hi with i2; (b) Fn?i+1,m?i+1,h?i+11
Fig.13  The implementation circuits for the inverse of the multi-level 3D-D4QWT. (a) (Fn,m,hi)?1 with i2; (b) (Fn?i+1,m?i+1,h?i+11)?1
Fig.14  The circuit for F4,5,53. The circuit in the dashed box implements F3,4,42
Fig.15  The circuits for 3-level 1D-HQWTs H43 and H53. (a) H43; (b) H53
Fig.16  The circuit for the 3-level 2D-HQWT H4,53
  
Fig.17  Simulation results of the first two levels of the 3D-HQWT. (a) A 64×64×8 original video; (b) the transformed video for the 1-level 3D-HQWT; (c) the transformed video for the 2-level 3D-HQWT
Fig.18  Simulation results of the first two levels of the 3D-D4QWT. (a) A 64×64×8 original video; (b) the transformed video for the 1-level 3D-D4QWT; (c) the transformed video for the 2-level 3D-D4QWT
Level norm(V1?W1) norm(V2?Λ26,26,25) norm(V3?W3) norm(V4?Λ26,26,25)
1 7×10?12 3.3×10?11 3.19×10?9 3.47×10?11
2 3.2×10?11 5.9×10?11 5.72×10?9 8.16×10?11
3 4.05×10?10 3.34×10?10 8.24×10?9 2.371×10?10
4 1.527×10?9 1.636×10?9 1.238×10?8 5.515×10?10
5 7.746×10?9 7.876×10?9 ? ?
Tab.1  Comparisons of the proposed QWTs and the corresponding classical wavelet transforms
Fig.19  An 8×8×8 original video
Fig.20  Quantum circuit of an 8×8×8 video with 2-level 3D-HQWT. (a) The first part of the circuit; (b) the second part of the circuit
Fig.21  Probability histogram of an 8×8×8 video with 2-level 3D-HQWT after 8192 quantum measurements
Fig.22  Quantum circuit of an 8×8×8 video with 2-level 3D-D4QWT. The symbols circuit401, circuit393, and circuit397 represent the NOT, S0, and S1 gates, respectively. (a) The first part of the circuit; (b) the second part of the circuit; (c) the third part of the circuit
Fig.23  Probability histogram of an 8×8×8 video with 2-level 3D-D4QWT after 8192 quantum measurements
Fig.24  Comparisons of QVC-3D-HQWT and QIC2DHQWT. HW1=i and HW2=i (i=1,2,3,4,5) denote the i-level 3D-HQWT and 2D-HQWT, respectively
Fig.25  Comparisons of QVC-3D-D4QWT and QIC2DD4QWT. DW1=k and DW2=k (k=1,2,3,4) denote the k-level 3D-D4QWT and 2D-D4QWT, respectively
QWTs 3D-HQWT 2D-HQWT 3D-D4QWT 2D-D4QWT
PSNR 30.39 30.40 30.14 30.81
QCR 29.08 12.94 22.06 11.61
Threshold λ6H β4H λ1D β2D
Level 5 5 4 4
Tab.2  QCR and PSNR for simulation results
Fig.26  Simulation results for QVC-3D-HQWT and QVC-3D-D4QWT. (a) An original video; (b) the compressed video by QVC-3D-HQWT; (c) the compressed video by QVC-3D-D4QWT
  
  
  
1 J Stajic . The future of quantum information processing. Science, 2013, 339( 6124): 1163
2 C Monroe . Quantum information processing with atoms and photons. Nature, 2002, 416( 6877): 238–246
3 P W Shor . Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. 1994, 124−134
4 C, Huang D, Zhang G Song . A novel mapping algorithm for three-dimensional network on chip based on quantum-behaved particle swarm optimization. Frontiers of Computer Science, 2017, 11( 4): 622–631
5 L K Grover . A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing. 1996, 212−219
6 G, Long Y Liu . Search an unsorted database with quantum mechanics. Frontiers of Computer Science in China, 2007, 1( 3): 247–271
7 M A, Nielsen I L Chuang . Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000
8 F, Yan S, Jiao A M, Iliyasu Z Jiang . Chromatic framework for quantum movies and applications in creating montages. Frontiers of Computer Science, 2018, 12( 4): 736–748
9 H S, Li Q, Zhu R G, Zhou M C, Li L, Song H Ian . Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Information Sciences, 2014, 273: 212–232
10 F, Yan A M, Iliyasu Y, Guo H Yang . Flexible representation and manipulation of audio signals on quantum computers. Theoretical Computer Science, 2018, 752: 71–85
11 H S, Li P, Fan H, Xia H, Peng G L Long . Efficient quantum arithmetic operation circuits for quantum image processing. Science China Physics, Mechanics & Astronomy, 2020, 63( 8): 280311
12 H S, Li P, Fan H Y, Xia H, Peng S Song . Quantum implementation circuits of quantum signal representation and type conversion. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66( 1): 341–354
13 S, Wei Y, Chen Z, Zhou G Long . A quantum convolutional neural network on NISQ devices. AAPPS Bulletin, 2022, 32( 1): 2
14 S G Mallat . A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11( 7): 674–693
15 N M, Makbol B E, Khoo T H, Rassem K Loukhaoukha . A new reliable optimized image watermarking scheme based on the integer wavelet transform and singular value decomposition for copyright protection. Information Sciences, 2017, 417: 381–400
16 X H, Song S, Wang S, Liu A A A, El-Latif X M Niu . A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Information Processing, 2013, 12( 12): 3689–3706
17 H S, Li P, Fan H, Peng S, Song G L Long . Multilevel 2-D quantum wavelet transforms. IEEE Transactions on Cybernetics, 2022, 52( 8): 8467–8480
18 P Hoyer . Efficient quantum transforms. 1997, arXiv preprint arXiv: quant-ph/9702028
19 A Klappenecker . Wavelets and wavelet packets on quantum computers. In: Proceedings of SPIE 3813, Wavelet Applications in Signal and Image Processing VII. 1999, 703−713
20 A, Fijany C P Williams . Quantum wavelet transforms: fast algorithms and complete circuits. In: Proceedings of the 1st NASA International Conference on Quantum Computing and Quantum Communications. 1998, 10−33
21 M, Terraneo D L Shepelyansky . Imperfection effects for multiple applications of the quantum wavelet transform. Physical Review Letters, 2003, 90( 25): 257902
22 B J, Fino V R Algazi . A unified treatment of discrete fast unitary transforms. SIAM Journal on Computing, 1977, 6( 4): 700–717
23 H S, Li P, Fan H Y, Xia S Song . Quantum multi-level wavelet transforms. Information Sciences, 2019, 504: 113–135
24 H S, Li P, Fan H Y, Xia S, Song X He . The multi-level and multi-dimensional quantum wavelet packet transforms. Scientific Reports, 2018, 8( 1): 13884
25 G, Beylkin R, Coifman V Rokhlin . Fast wavelet transforms and numerical algorithms. In: Heil C, Walnut D F, eds. Fundamental Papers in Wavelet Theory. Princeton: Princeton University Press, 2006, 741−783
26 S, Boopathiraja P Kalavathi . A near lossless three-dimensional medical image compression technique using 3D-discrete wavelet transform. International Journal of Biomedical Engineering and Technology, 2021, 35( 3): 191–206
27 Y, Zhang S, Wang P, Phillips Z, Dong G, Ji J Yang . Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomedical Signal Processing and Control, 2015, 21: 58–73
28 R, Anand S, Veni J Aravinth . Robust classification technique for hyperspectral images based on 3D-discrete wavelet transform. Remote Sensing, 2021, 13( 7): 1255
29 Z, Chen R Ning . Breast volume denoising and noise characterization by 3D wavelet transform. Computerized Medical Imaging and Graphics, 2004, 28( 5): 235–246
30 G L, Long Y Sun . Efficient scheme for initializing a quantum register with an arbitrary superposed state. Physical Review A, 2001, 64( 1): 014303
31 A, Barenco C H, Bennett R, Cleve D P, DiVincenzo N, Margolus P, Shor T, Sleator J A, Smolin H Weinfurter . Elementary gates for quantum computation. Physical Review A, 1995, 52( 5): 3457–3467
32 Y, Liu G L, Long Y Sun . Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates. International Journal of Quantum Information, 2008, 6( 3): 447–462
33 E, Muñoz-Coreas H Thapliyal . Quantum circuit design of a T-count optimized integer multiplier. IEEE Transactions on Computers, 2019, 68( 5): 729–739
34 H S, Li P, Fan H, Xia G L Long . The circuit design and optimization of quantum multiplier and divider. Science China Physics, Mechanics & Astronomy, 2022, 65( 6): 260311
35 E, Moyano F J, Quiles A, Garrido T, Orozco-Barbosa J Duato . Efficient 3D wavelet transform decomposition for video compression. In: Proceedings of the 2nd International Workshop on Digital and Computational Video. 2001, 118−125
36 C, Wu B, Qi C, Chen D Dong . Robust learning control design for quantum unitary transformations. IEEE Transactions on Cybernetics, 2017, 47( 12): 4405–4417
37 I Daubechies . Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1988, 41( 7): 909–996
38 S A, More P J Deore . Gait recognition by cross wavelet transform and graph model. IEEE/CAA Journal of Automatica Sinica, 2018, 5( 3): 718–726
[1] FCS-21639-OF-CY_suppl_1 Download
[1] Xiaoling HUANG, Youxia DONG, Guodong YE, Yang SHI. Meaningful image encryption algorithm based on compressive sensing and integer wavelet transform[J]. Front. Comput. Sci., 2023, 17(3): 173804-.
[2] Ke-Jia CHEN, Mingyu WU, Yibo ZHANG, Zhiwei CHEN. SR-AFU: super-resolution network using adaptive frequency component upsampling and multi-resolution features[J]. Front. Comput. Sci., 2023, 17(1): 171307-.
[3] Fei YAN, Sihao JIAO, Abdullah M. ILIYASU, Zhengang JIANG. Chromatic framework for quantum movies and applications in creating montages[J]. Front. Comput. Sci., 2018, 12(4): 736-748.
[4] Xuejuan ZHANG, Xiaochun CAO, Jingjie LI. Geometric attack resistant image watermarking based on MSER[J]. Front Comput Sci, 2013, 7(1): 145-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed