Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2010, Vol. 4 Issue (4) : 417-422    https://doi.org/10.1007/s11705-010-0515-8
RESEARCH ARTICLE
Experimental study on the laminar flame speed of hydrogen/natural gas/air mixtures
Chen DONG, Qulan ZHOU(), Xiaoguang ZHANG, Qinxin ZHAO, Tongmo XU, Shi’en HUI
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(301 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Laminar flame speeds of hydrogen/natural gas/air mixtures have been measured over a full range of fuel compositions (0–100% volumetric fraction of H2) and a wide range of equivalence ratio using Bunsen burner. High sensitivity scientific CCD camera is use to capture the image of laminar flame. The reaction zone area is employed to calculate the laminar flame speed. The initial temperature and pressure of fuel air mixtures are 293 K and 1 atm. The laminar flame speeds of hydrogen/air mixture and natural gas/air mixture reach their maximum values 2.933 and 0.374 m/s when equivalence ratios equal to 1.7 and 1.1, respectively. The laminar flame speeds of hydrogen/natural gas/air mixtures rise with the increase of volumetric fraction of hydrogen. Moreover, the increase in laminar flame speed as the volumetric fraction of hydrogen increases presents an exponential increasing trend versus volumetric fraction of hydrogen. Empirical formulas to calculate the laminar flame speeds of hydrogen, natural gas, and hydrogen/natural gas mixtures are also given. Using these formulas, the laminar flame speed at different hydrogen fractions and equivalence ratios can be calculated.

Keywords laminar flame speed      experimental study      Bunsen flame     
Corresponding Author(s): ZHOU Qulan,Email:qlzhou@mail.xjtu.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Chen DONG,Qulan ZHOU,Xiaoguang ZHANG, et al. Experimental study on the laminar flame speed of hydrogen/natural gas/air mixtures[J]. Front Chem Eng Chin, 2010, 4(4): 417-422.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0515-8
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I4/417
Fig.1  Schematic of the experiment setup (MFM= mass flow meter)
Fig.2  Laminar flame speed of H/air versus equivalence ratio
Fig.3  Laminar flame speed of NG/air versus equivalence ratio
Fig.4  Laminar flame speeds of H/NG/air mixtures versus equivalence ratio
Fig.5  Fitting curve of laminar flame speed versus equivalence ratio for H
Fig.6  Fitting curve of laminar flame speed versus equivalence ratio for NG
Fig.7  Laminar flame speed increment versus H fraction at different equivalence ratios
1 Zaporowski B, Szczerbowski R. Energy analysis of technological systems of natural gas fired combined heat-and-power plants. Applied Energy , 2003, 75(1-2): 43-50
doi: 10.1016/S0306-2619(03)00017-5
2 Rousseau S, Lemoult B, Tazerout M. Combustion characteristics of natural gas in a lean burn spark-ignition engine. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering , 1999, 213(5): 481-489
doi: 10.1243/0954407991527044
3 Blarigan P V, Keller J O. A hydrogen fueled internal combustion engine designed for single speed/power operation. International Journal of Hydrogen Energy , 1998, 23(7): 603-609
doi: 10.1016/S0360-3199(97)00100-6
4 Akansu S O, Dulger Z, Kahraman N, Veziroglu T N. Internal combustion engines fuelled by natural gas-hydrogen mixtures. International Journal of Hydrogen Energy , 2004, 29(14): 1527-1539
doi: 10.1016/j.ijhydene.2004.01.018
5 Scholte T G, Vaags P B. Burning velocities of mixtures of hydrogen, carbon monoxide and methane with air. Combustion and Flame , 1959, 3: 511-524
doi: 10.1016/0010-2180(59)90057-4
6 Liu Y, Lenze B, Leuckel W. Investigation on the laminar and turbulent burning velocities of premixed lean and rich flames of methane-hydrogen-air mixtures. Prog Astronaut Aeronaut , 1991, 131: 259-274
7 Milton B E, Keck J C. Laminar burning velocities in stoichiometric hydrogen and hydrogen-hydrocarbon gas mixtures. Combustion and Flame , 1984, 58(1): 13-22
doi: 10.1016/0010-2180(84)90074-9
8 Yu G, Law C K, Wu C K. Laminar flame speed of hydrocarbon+ air mixtures with hydrogen addition. Combustion and Flame , 1986, 63(3): 339-347
doi: 10.1016/0010-2180(86)90003-9
9 Ren J Y, Qin W, Egolfopoulos F N, Tsotsis T T. Strain-rate effects on hydrogen-enhanced lean premixed combustion. Combustion and Flame , 2001, 124(4): 717-720
doi: 10.1016/S0010-2180(00)00205-4
10 Ren J Y, Qin W, Egolfopoulos F N, Mak H, Tsotsis T T. Methane reforming and its potential effect on the efficiency and pollutant emissions of lean methane-air combustion. Chemical Engineering Science , 2001, 56(4): 1541-1549
doi: 10.1016/S0009-2509(00)00381-X
11 Halter F, Chauveau C, Djeba?li-Chaumeix N, G?kalp I. DjebaIli-Chaumeix N, Gokalp I. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixtures. Proceedings of the Combustion Institute , 2005, 30(1): 201-208
doi: 10.1016/j.proci.2004.08.195
12 Law C K, Kwon O C. Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation. International Journal of Hydrogen Energy , 2004, 29(8): 867-879
doi: 10.1016/j.ijhydene.2003.09.012
13 Miller D R, Evers R L, Skinner G B. Effects of various inhibitors on hydrogen-air flame speeds. Combustion and Flame , 1963, 7: 137-142
doi: 10.1016/0010-2180(63)90171-8
14 Huang Z H, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D M. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures. Combustion and Flame , 2006, 146(1-2): 302-311
doi: 10.1016/j.combustflame.2006.03.003
15 Law C K, Sung C J. Structure, aerodynamics, and geometry of premixed flamelets. Progress in Energy and Combustion Science , 2000, 26(4-6): 459-505
doi: 10.1016/S0360-1285(00)00018-6
16 Natarajan J, Lieuwen T, Seitzman J. Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure. Combustion and Flame , 2007, 151(1-2): 104-119
doi: 10.1016/j.combustflame.2007.05.003
17 Liu D D S, Macfarlane R. Laminar burning velocities of hydrogen-air and hydrogen-air-steam flames. Combustion and Flame , 1983, 49(1-3): 59-71
doi: 10.1016/0010-2180(83)90151-7
18 Ilbas M, Crayford A P, Yilmaz I, Bowen P J, Syred N. Laminar burning velocities of hydrogen-air and hydrogen-methane-air mixtures: an experimental study. International Journal of Hydrogen Energy , 2006, 31(12): 1768-1779
doi: 10.1016/j.ijhydene.2005.12.007
19 Takahashi F, Mizomoto M, Ikai S. Laminar burning velocities of hydrogen/oxygen/inert gas mixtures. Alternative Energy Sources. III. Nuclear Energy/Synthetic Fuels , 1983, 5: 447
20 Dowdy D R, Smith D B, Taylor S C, Williams A. The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen-air mixtures. Proceedings of the Combustion Institute , 1990, 23: 325-332
21 Aung K T, Hassan M I, Faeth G M. Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure. Combustion and Flame , 1997, 109(1-2): 1-24
doi: 10.1016/S0010-2180(96)00151-4
22 Lamoureux N, Djebaili-Chaumeix N, Paillard C E. Laminar flame velocity determination for H2-air-He-CO2 mixtures using the spherical bomb method. Experimental Thermal and Fluid Science , 2003, 27(4): 385-393
doi: 10.1016/S0894-1777(02)00243-1
24 Vagelopoulos C M, Egolfopoulos F N. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. Proceedings of the Combustion Institute , 1994, 25(1): 1317-1323
[1] Chen DONG, Qulan ZHOU, Qinxin ZHAO, Tongmo XU, Shi’en HUI. Numerical study on laminar flame speed of natural gas-carbon monoxide-air mixtures[J]. Front Chem Eng Chin, 2010, 4(4): 411-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed