Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (4) : 500-513    https://doi.org/10.1007/s11705-011-1108-x
RESEARCH ARTICLE
CO2 and H2 selectivity properties of PDMS/PSf membrane prepared at different conditions
S. A. A. MANSOORI, M. PAKIZEH(), A. JOMEKIAN
Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
 Download: PDF(1149 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effects of different solvent/water coagulation mediums, different coagulation bath temperatures (CBT) and different coagulants on the performance, morphology and thermal stability of polysulfone membranes were investigated. The CO2/CH4, H2/CH4 and H2/N2 separation performance of the membranes were studied by gas permeation. Changing the N,N-dimethyl acetamide (DMAc)/water coagulation medium ratio from pure water to 90/10 vol%, resulted in a complete disappearance of the macrovoids throughout the polysulfone (PSf) polymeric matrix. The PSf membrane prepared in a CBT of 25°C showed the best gas separation performance with ideal selectivities of 46.29, 39.81 and 51.02 for H2/CH4, CO2/CH4 and H2/N2 respectively, and permeances of 25 and 21.5 GPU for H2 and CO2 at 25°C and 10 bar respectively. By increasing the amount of solvent in the gelation bath, the selectivities of H2/CH4, CO2/CH4 and H2/N2 were dramatically reduced from 46.29, 39.81 and 51.02 to 16.08, 20.2 and 18.5 respectively at 25°C and 10 bar. Reducing the CBT from 80°C to 5°C led to a complete elimination of macrovoids. Using methanol as a coagulant resulted in a less selective membrane compared with membranes from ethanol and water coagulants. The H2 and CO2 permeances were respectively about 3 and 9 times more than those for ethanol and water coagulants. Coated membranes were heated at different temperatures to investigate the suppression of undesirable CO2 plasticization. The membranes were stabilized against CO2 plasticization by a heat-treatment process.

Keywords gas separation      PDMS/PSf membrane      synthesis parameters      CO2 selectivity     
Corresponding Author(s): PAKIZEH M.,Email:pakizeh@um.ac.ir   
Issue Date: 05 December 2011
 Cite this article:   
S. A. A. MANSOORI,M. PAKIZEH,A. JOMEKIAN. CO2 and H2 selectivity properties of PDMS/PSf membrane prepared at different conditions[J]. Front Chem Sci Eng, 2011, 5(4): 500-513.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1108-x
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I4/500
Fig.1  Schematic representation of the gas permeation module
Fig.2  Schematic illustration of the constant pressure testing system
Fig.3  SEM photographs of the effect of the solvent concentration in the gelation bath on membrane structure. Gelation bath DMAc: deionized water ratios (a) 0 ∶ 100 vol-%; (b) 40 ∶ 60 vol-%; (c) 80 ∶ 20 vol-%; (d) 90 ∶ 10 vol-%
Fig.4  SEM photographs of the effect of the solvent concentration in the gelation bath on membrane structure. Gelation bath DMAc: deionized water ratios (a) 0 ∶ 100 vol-%; (b) 40 ∶ 60 vol-%; (c) 80 ∶ 20 vol-%; (d) 90 ∶ 10 vol (with magnification 10000)
Fig.5  SEM photographs of a PSf membrane surface. Gelation bath: (a) pure deionized water; (b) 80 vol-% DMAc, 20 vol-% deionized water
Gelation bath composition: vol-% DMAC: vol-% deionized waterPermeance/ GPU b)Selectivity
H2CH4CO2H2/CH4CO2/CH4
0 ∶ 100250.5421.546.2939.81
40 ∶ 6012.10.3610.2533.6128.47
80 ∶ 206.20.275.0122.9618.88
90 ∶ 103.70.232.916.0812.6
Tab.1  Gas permeance and selectivity through PDMS/PSf composite membranes (with different gelation bath compositions)
Gelation bath composition vol% DMAC: vol% deionized waterPermeance/ GPU b)Selectivity of H2/N2
H2N2
0 ∶ 100250.4951.02
40 ∶ 6012.10.3435.58
80 ∶ 206.20.2524.8
90 ∶ 103.70.2018.5
Tab.2  Gas permeance and selectivity through PDMS/PSf composite membranes (with different gelation bath compositions)
Fig.6  SEM photographs of the effect of the coagulation bath temperature on membrane structure. Gelation temperature (a) 5°C; (b) 25°C; (c) 50°C; (d) 80°C
CBT /°CPermeance/GPU b)Selectivity of H2/N2
H2N2
520.50.5934.74
25250.4951.02
5022.80.9723.5
80211.119.09
Tab.3  Gas permeance and selectivity of PDMS/PSf composite membrane using deionized water as coagulant (at different CBT)
CBT /°CPermeance/GPU b)Selectivity
H2CH4CO2H2/CH4CO2/CH4
520.50.6315.532.5424.6
25250.5421.546.2939.81
5022.81.118.520.7216.81
80211.61613.1210
Tab.4  Gas permeance and selectivity of PDMS/PSf composite membrane using deionized water as coagulant (at different CBT)
Fig.7  SEM photographs of the effect of the coagulant on the polysulfone membrane structure made by dry/wet phase inversion using forced convective evaporation. (a) deionized water; (b) ethanol; (c) methanol
Fig.8  SEM photographs of the effect of the coagulant on the polysulfone membrane structure made by dry/wet phase inversion using forced convective evaporation. (a) deionized water; (b) ethanol; (c) methanol with magmification 10000
Fig.9  SEM photographs of the top structure of asymmetric polysulfone membrane sample at a magnification of 100000. Coagulant: (a) methanol; (b) ethanol; (c) water
Fig.10  SEM photographs of the surface of PSF membranes made with different coagulants. (a) Water bath; (b) Ethanol bath; (c) Methanol bath
CoagulantPermeance /GPU b)Selectivity
H2CH4CO2H2/CH4CO2/CH4
Deionized water250.5421.546.2939.81
Ethanol712.0562.3534.6330.41
Methanol217.58.09189.226.8823.38
Tab.5  Gas permeance and selectivity through PDMS/PSf composite membranes (with different coagulants)
CoagulantPermeance /GPU bSelectivity of H2/N2
H2N2
Deionized water250.4951.02
Ethanol711.9736.04
Methanol217.57.9427.39
Tab.6  Gas permeance and selectivity through PDMS/PSf composite membranes (with different coagulants)
Membrane typePermeance or permeabilitySelectivityRef.
H2CH4N2CO2H2/CH4,H2/N2,CO2/CH4
Silicone-coated PSf16a)0.47a)0.37a)6.8534.04,43.24,14.57[11]
PDMS/PSf62.94b)3.09b)2.87b)-20.4,22-[12]
PSf/Silica (85/15 vol-%)22.7a)0.62a)0.67a)12.9a)36.61,33.88,20.8[13]
PBN/PI (15 wt-%)14.31a)1.78a)--8.04--[14]
Present work25b)0.54b)0.49b)21.546.29,51.02,39.81
Tab.7  A comparison between the present work and other studies
Fig.11  TGA curves showing the effect of different coagulation baths on the thermal degradation of PSF membranes
Fig.12  CO permeation rate as a function of CO feed pressure at different temperatures
1 Baker R W. Membrane Technology and Application. 2nd ed. New York: Wiley J, 2004, 301-–349
doi: 10.1002/0470020393.ch8
2 Bhide B D, Stern S A. Membrane processes for the removal of acid gases from natural gas. I. Process configurations and optimization of operating conditions. Journal of Membrane Science , 1993, 81(3): 209–237
doi: 10.1016/0376-7388(93)85175-V
3 Bhide B D, Stern S A. Membrane processes for the removal of acid gases from natural gas. II. Effects of operating conditions, economic parameters and membrane properties. Journal of Membrane Science , 1993, 81(3): 239–252
doi: 10.1016/0376-7388(93)85176-W
4 MacLean D L, Bollinger W A, King D E, Narayan R S. Gas Separation Design with Membranes, in Recent Developments in Separation Science. Boca Raton , FL: CRC Press, 1986, 9-–14
5 Gardner R G, Crane R A, Hannan J F. Hollow fiber permeator for separating gases. Chemical Engineering Progress , 1977, 73: 76–78
6 Chung T S, Shieh J J, Lau W W Y, Srinivasan M P, Paul B D. Fabrication of multi-layer composite hollow fiber membranes for gas separation. Journal of Membrane Science , 1999, 152(2): 211–225
doi: 10.1016/S0376-7388(98)00225-7
7 Liu L, Chakma A, Feng X. Preparation of hollow fiber poly(ether block amide)/polysulfone composite membranes for separation of carbon dioxide from nitrogen. Chemical Engineering Journal , 2004, 105(1-2): 43–51
doi: 10.1016/j.cej.2004.08.005
8 Du R H, Feng X S, Chakma A. Poly(N,N-dimethylaminothyl methacry late)/polysulfone composite membranes for gas separation. Journal of Membrane Science , 2006, 279(1-2): 76–85
doi: 10.1016/j.memsci.2005.11.048
9 Brandrup J, Immergut E H, Grulke E A. Polymer Handbook. 4th ed. New York: Wiley Interscience, 1999, 100–105
10 Kapantaidakis G C, Kaldis S P, Dabou X S,Sakellaropoulos G P. Gas permeation through PSF-PI miscible blend membranes. Journal of Membrane Science , 1996, 110(2): 239–247
doi: 10.1016/0376-7388(95)00265-0
11 Marchese J, Ochoa N, Pagliero C. Preparation and gas separation performance of silicone-coated polysulfone membranes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 1995, 63(4): 329–336
doi: 10.1002/jctb.280630405
12 Peng F, Liu J, Li J. Analysis of the gas transport performance through PDMS/PS composite membranes using the resistances-in-series model. Journal of Membrane Science , 2003, 222(1-2): 225–234
doi: 10.1016/S0376-7388(03)00293-X
13 Ahn J, Jin Chung W, Pinnau I, Guiver D M. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. Journal of Membrane Science , 2008, 314(1-2): 123–133
doi: 10.1016/j.memsci.2008.01.031
14 Weng T H, Tseng H H, Wey M Y. Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. International Journal of Hydrogen Energy , 2009, 34(20): 8707–8715
doi: 10.1016/j.ijhydene.2009.08.027
15 Shao L, Chung T S. In situ fabrication of cross-linked PEO/silica reverse-selective membranes for hydrogen purification. International Journal of Hydrogen Energy , 2009, 34(15): 6492–6504
doi: 10.1016/j.ijhydene.2009.05.137
16 Shao L, Liu L, Cheng S, Huang Y, Ma J. Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport. Journal of Membrane Science , 2008, 312(1-2): 174–185
doi: 10.1016/j.memsci.2007.12.060
17 Shao L, Chung T, Goh S, Pramoda K. The effects of 1,3-cyclohexanebis(methylamine) modification on gas transport and plasticization resistance of polyimide membranes. Journal of Membrane Science , 2005, 267(1-2): 78–89
doi: 10.1016/j.memsci.2005.06.004
18 Shao L, Chung T S, Pramoda K P. The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon. Microporous and Mesoporous Materials , 2005, 84(1-3): 59–68
doi: 10.1016/j.micromeso.2005.04.026
19 Stropnik C, Kaiser V. Polymeric membranes preparation by wet phase separation: mechanisms and elementary processes. Desalination , 2002, 145(1-3): 1–10
doi: 10.1016/S0011-9164(02)00322-3
20 Aroon M A, Ismail A F, Montazer-Rahmati M M, Matsuura T. Morphology and permeation properties of polysulfone membranes for gas separation: effects of non-solvent additives and co-solvent. Separation and Purification Technology , 2010, 72(2): 194–202
doi: 10.1016/j.seppur.2010.02.009
21 Amirilargani M, Saljoughi E, Mohammadi T. Effects of Tween 80 concentration as a surfactant additive on morphology and permeability of flat sheet polyethersulfone (PES) membranes. Desalination , 2009, 249(2): 837–842
doi: 10.1016/j.desal.2009.01.041
22 Moon J H, Bae J H, Bae Y S, Chung J T, Lee C H. Hydrogen separation from reforming gas using organic templating silica/alumina composite membrane. Journal of Membrane Science , 2008, 318(1-2): 45–55
doi: 10.1016/j.memsci.2008.02.001
23 Kim J Y, Lee H K, Baik K J, Kim S C. Liquid-liquid phase separation in polysulfone/solvent/water systems. Journal of Applied Polymer Science , 1997, 65(13): 2643–2653
doi: 10.1002/(SICI)1097-4628(19970926)65:13<2643::AID-APP6>3.0.CO;2-B
24 Kim J Y, Kim Y D, Kanamori T, Lee H K, Baik K J, Kim S C. Vitrification phenomena in polysulfone/NMP/water system. Journal of Applied Polymer Science , 1999, 71(3): 431–438
doi: 10.1002/(SICI)1097-4628(19990118)71:3<431::AID-APP9>3.0.CO;2-2
25 Wijmans J G, Baaij J P B, Smolders C A. The mechanism of formation of microporous or skinned membranes produced by immersion precipitation. Journal of Membrane Science , 1983, 14(3): 263–274
doi: 10.1016/0376-7388(83)80005-2
26 Reuvers A J, Smolders C A. Formation of membranes by means of immersion precipitation. Part II: The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water. Journal of Membrane Science , 1987, 34(1): 67–86
doi: 10.1016/S0376-7388(00)80021-6
27 Han M J, Nam S T. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. Journal of Membrane Science , 2002, 202(1-2): 55–61
doi: 10.1016/S0376-7388(01)00718-9
28 Barzin J, Madaeni S, Mirzadeh S H. Effect of preparation conditions on morphology and performance of hemodialysis membranes prepared from polyethersulfone and polyvinylpyrrolidone. Iranian Polymer Journal , 2005, 14: 353–370
29 Smolders C A, Reuvers A J, Boom R M, Wienk I M. Microstructures in phase inversion membranes. Part I: Formation of macrovoids. Journal of Membrane Science , 1992, 73(2-3): 259–275
doi: 10.1016/0376-7388(92)80134-6
30 Andrew W. Permeability and Other Film Properties of Plastics and Elastomers. In: Plastics Design Library . New York: Norwich, 1995, 58–60
31 Yampolskii Y, Pinnau I, Freeman B D. Materials Science of Membranes for Gas and Vapor Separation. Chichester: Wiley, 2006, 271-–280
doi: 10.1002/047002903X
32 Liu Y, Wang R, Chung T S. Chemical cross-linking modification of polyimide membranes for gas separation. Journal of Membrane Science , 2001, 189(2): 231–239
doi: 10.1016/S0376-7388(01)00415-X
33 Bos A, Punt I G M, Wessling M, Strathmann H. CO2-induced plasticization phenomena in glassy polymer. Journal of Membrane Science , 1999, 155(1): 67–78
doi: 10.1016/S0376-7388(98)00299-3
34 Bos A, Punt I G M, Wessling M, Strathmann H. Plasticization resistant glassy polyimide membranes for high pressure CO2/CH4 separations. Separation and Purification Technology , 1998, 14(1-3): 27–39
doi: 10.1016/S1383-5866(98)00057-4
[1] Huaiwei Shi, Teng Zhou. Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing[J]. Front. Chem. Sci. Eng., 2021, 15(1): 49-59.
[2] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[3] Guozhao JI, Guoxiong WANG, Kamel HOOMAN, Suresh BHATIA, Jo?o C. DINIZ da COSTA. Computational fluid dynamics applied to high temperature hydrogen separation membranes[J]. Front Chem Sci Eng, 2012, 6(1): 3-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed