Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (4) : 415-422    https://doi.org/10.1007/s11705-012-1214-4
RESEARCH ARTICLE
Influence of crystalline phase of Li-Al-O oxides on the activity of Wacker-type catalysts in dimethyl carbonate synthesis
Yadong GE, Yuanyuan DONG, Shengping WANG, Yujun ZHAO, Jing LV, Xinbin MA()
Key Laboratory for Green Chemical Technology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(360 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The catalysts supported on LiAl5O8 (spinel) for vapor phase synthesis of dimethyl carbonate (DMC) from methyl nitrite (MN) have been studied. Their catalytic activities on supports prepared by different methods were evaluated in a continuous reactor. The samples were characterized by powder X-ray diffraction, N2 adsorption-desorption isotherms, fourier transform infrared spectroscopy and temperature-programmed reduction of H2. Li/Al molar ratio and calcination temperature greatly influence the structure of crystalline phase of Li-Al-O oxides. Desirable LiAl5O8 (spinel) was formed at 800°C, while LiAl5O8 (primitive cube) formed at 900°C is undesirable for the reaction. A high Li/Al molar ratio, which was related with LiAlO2, also slowed the reaction rate. The electron transfer ability and the interaction with active component are the important properties of the spinel-based supports. The CuCl2-PdCl2/LiAl5O8 (spinel) with better electron transfer ability and low Pd2+ reduction temperature exhibited a better catalytic ability.

Keywords Wacker-type catalyst      dimethyl carbonate      methyl nitrite      spinel     
Corresponding Author(s): MA Xinbin,Email:xbma@tju.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Yujun ZHAO,Jing LV,Xinbin MA, et al. Influence of crystalline phase of Li-Al-O oxides on the activity of Wacker-type catalysts in dimethyl carbonate synthesis[J]. Front Chem Sci Eng, 2012, 6(4): 415-422.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1214-4
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I4/415
Calcination temperature /°CSpecific surface area /(m2·g–1)Pore volume /(cm3·g–1)Pore diameter /nm
700128.80.338.8
800103.20.309.5
90080.10.2811.7
Tab.1  Textural properties of the supports calcined at different temperatures
Fig.1  Nitrogen adsorption-desorption isotherms and pore size distribution for supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.1  Nitrogen adsorption-desorption isotherms and pore size distribution for supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.1  Nitrogen adsorption-desorption isotherms and pore size distribution for supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.1  Nitrogen adsorption-desorption isotherms and pore size distribution for supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.1  Nitrogen adsorption-desorption isotherms and pore size distribution for supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.1  Nitrogen adsorption-desorption isotherms and pore size distribution for supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.2  SEM micrographs of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.2  SEM micrographs of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.2  SEM micrographs of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.2  SEM micrographs of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.2  SEM micrographs of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.2  SEM micrographs of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.3  The XRD patterns of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.3  The XRD patterns of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.3  The XRD patterns of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.3  The XRD patterns of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.3  The XRD patterns of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.3  The XRD patterns of supports calcined at different temperatures: (a) 700°C, (b) 800°C, and (c) 900°C
Fig.4  Effects of supports calcined at different temperatures on catalysts: (a) Pd-Cu/LiAl-700, (b) Pd-Cu/LiAl-800, and (c) Pd-Cu/LiAl-900
Fig.4  Effects of supports calcined at different temperatures on catalysts: (a) Pd-Cu/LiAl-700, (b) Pd-Cu/LiAl-800, and (c) Pd-Cu/LiAl-900
Fig.4  Effects of supports calcined at different temperatures on catalysts: (a) Pd-Cu/LiAl-700, (b) Pd-Cu/LiAl-800, and (c) Pd-Cu/LiAl-900
Fig.4  Effects of supports calcined at different temperatures on catalysts: (a) Pd-Cu/LiAl-700, (b) Pd-Cu/LiAl-800, and (c) Pd-Cu/LiAl-900
Fig.4  Effects of supports calcined at different temperatures on catalysts: (a) Pd-Cu/LiAl-700, (b) Pd-Cu/LiAl-800, and (c) Pd-Cu/LiAl-900
Fig.4  Effects of supports calcined at different temperatures on catalysts: (a) Pd-Cu/LiAl-700, (b) Pd-Cu/LiAl-800, and (c) Pd-Cu/LiAl-900
Fig.5  The XRD patterns of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.5  The XRD patterns of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.5  The XRD patterns of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.5  The XRD patterns of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.5  The XRD patterns of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.5  The XRD patterns of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.6  TEM images of LiAl-0.15
Fig.6  TEM images of LiAl-0.15
Fig.6  TEM images of LiAl-0.15
Fig.6  TEM images of LiAl-0.15
Fig.6  TEM images of LiAl-0.15
Fig.6  TEM images of LiAl-0.15
SupportsLi/Al (molar) ratioCalcination at 800°C
LiAl-0.050.05γ-Al2O3 + LiAl5O8
LiAl-0.100.10γ-Al2O3 + LiAl5O8
LiAl-0.150.15γ-Al2O3 + LiAl5O8
LiAl-0.200.20LiAl5O8 + LiAlO2
LiAl-0.250.25LiAl5O8 + LiAlO2
Tab.2  The composition of supports with different Li/Al (molar) ratios
Fig.7  The FTIR spectra of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.7  The FTIR spectra of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.7  The FTIR spectra of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.7  The FTIR spectra of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.7  The FTIR spectra of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.7  The FTIR spectra of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.8  Nitrogen adsorption-desorption isotherms and pore size distribution for the supports with different Li/Al ratios: (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.8  Nitrogen adsorption-desorption isotherms and pore size distribution for the supports with different Li/Al ratios: (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.8  Nitrogen adsorption-desorption isotherms and pore size distribution for the supports with different Li/Al ratios: (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.8  Nitrogen adsorption-desorption isotherms and pore size distribution for the supports with different Li/Al ratios: (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.8  Nitrogen adsorption-desorption isotherms and pore size distribution for the supports with different Li/Al ratios: (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.8  Nitrogen adsorption-desorption isotherms and pore size distribution for the supports with different Li/Al ratios: (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
SupportsSpecific surface area /(m2·g–1)Pore volume /(cm3·g–1)Pore diameter /nm
γ-Al2O3178.40.335.9
LiAl-0.05134.30.337.8
LiAl-0.10126.00.338.3
LiAl-0.15103.20.309.5
LiAl-0.20?97.60.309.9
LiAl-0.25?70.00.2512.3?
Tab.3  Textural properties of the supports with different Li/Al (molar) ratios
Fig.9  H-TPR profiles of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.9  H-TPR profiles of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.9  H-TPR profiles of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.9  H-TPR profiles of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.9  H-TPR profiles of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.9  H-TPR profiles of (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.10  Effects of supports with different Li/Al ratios on STY and . (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.10  Effects of supports with different Li/Al ratios on STY and . (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.10  Effects of supports with different Li/Al ratios on STY and . (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.10  Effects of supports with different Li/Al ratios on STY and . (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.10  Effects of supports with different Li/Al ratios on STY and . (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
Fig.10  Effects of supports with different Li/Al ratios on STY and . (a) Li/Al-0.05, (b) LiAl-0.10, (c) LiAl-0.15, (d) Li/Al-0.20, and (e) Li/Al-0.25
1 Nuernberg G D B, Fajardo H V, Foletto E L, Hickel-Probst S M, Carre?o N L V, Probst L F D, Barrault J. Methane conversion to hydrogen and nanotubes on Pt/Ni catalysts supported over spinel MgAl2O4. Catalysis Today , 2011, 176(1): 465–469
doi: 10.1016/j.cattod.2010.10.053
2 Widatallah H M, Johnson C, Berry F J, Jartych E, Gismelseed A M, Pekala M, Grabski J. On the synthesis and cation distribution of aluminum-substituted spinel-related lithium ferrite. Materials Letters , 2005, 59(8–9): 1105–1109
doi: 10.1016/j.matlet.2004.12.017
3 Valenzuela M A, Jacobs J P, Bosch P, Reijne S, Zapata B, Brongersma H H. The influence of the preparation method on the surface structure of ZnAl2O4. Applied Catalysis A , 1997, 148(2): 315–324
4 Grabowska H, Zawadzki M, Syper L. Catalytic method for N-methyl-4-pyridone synthesis in the presence of ZnAl2O4. Catalysis Letters , 2007, 121(1–2): 103–110
5 Yamamoto Y, Matsuzaki T, Tanaka S, Nishihira K, Ohdan K, Nakamura A, Okamoto Y. Catalysis and characterization of Pd/NaY for dimethyl carbonate synthesis from methyl nitrite and CO. Journal of the Chemical Society, Faraday Transactions , 1997, 93(20): 3721–3727
doi: 10.1039/a702015e
6 Anderson S L, Mizushima T, Udagawa Y. Growth/restructuring of palladium clusters induced by carbon monoxide adsorption. Journal of Physical Chemistry , 1991, 95(17): 6603–6610
doi: 10.1021/j100170a042
7 Yamamoto Y, Matsuzaki T, Ohdan K, Okamoto Y. Structure and electronic state of PdCl2-CuCl2 catalysts supported on activated carbon. Journal of Catalysis , 1996, 161(2): 577–586
doi: 10.1006/jcat.1996.0220
8 Manada N, Murakami M, Yamamoto Y, Kurafuji T. Preparation of dimethyl carbonate in the gas-phase reaction release of Cl-compound from PdCl2 catalyst and effect of methyl chloroformate. Nippon Kagaku Kaishi , 1994, 1994(11): 985–991
doi: 10.1246/nikkashi.1994.985
9 Briggs D N, Bong G, Leong E, Oei K, Lestari G, Bell A T. Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCunClx catalysts for the synthesis of diethyl carbonate. Journal of Catalysis , 2010, 276(2): 215–228
doi: 10.1016/j.jcat.2010.08.004
10 Jiang R, Wang Y, Zhao X, Wang S, Jin C, Zhang C. Characterization of catalyst in the synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol. Journal of Molecular Catalysis A Chemical , 2002, 185(1–2): 159–166
doi: 10.1016/S1381-1169(01)00526-X
11 Yamamoto Y. Vapor phase carbonylation reactions using methyl nitrite over Pd catalysts. Catalysis Surveys from Asia , 2010, 14(3–4): 103–110
doi: 10.1007/s10563-010-9102-8
12 Ohdan K, Matsuzaki T, Hidaka M. US Patent, 5688984-A, 1996–1127
13 Curnutt G L. USPatent, 5004827-A, 1991–04–02
14 Koyama T, Tonosaki M, Yamada N, Mori K. US Patent, 5347031-A, 1993–0224
15 Yang P, Cao Y, Dai W L, Deng J F, Fan K N. Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts. Applied Catalysis A , 2003, 243(2): 323–331
16 Briggs D N, Lawrence K H, Bell A T. An investigation of carbon-supported CuCl2/PdCl2 catalysts for diethyl carbonate synthesis. Applied Catalysis A , 2009, 366(1): 71 –83
17 Jiang R, Wang S, Zhao X, Wang Y, Zhang C. The effects of promoters on catalytic properties and deactivation–regeneration of the catalyst in the synthesis of dimethyl carbonate. Applied Catalysis A , 2003, 238(1): 131–139
18 Kutty T R N, Nayak M. Cationic distribution and its influence on the luminescent properties of Fe3+-doped LiAl5O8 prepared by wet chemical methods. Journal of Alloys and Compounds , 1998, 269(1–2): 75–87
doi: 10.1016/S0925-8388(98)00159-5
19 Yang P, Cao Y, Hu J C, Dai W L, Fan K N. Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol. Applied Catalysis A , 2003, 241(1–2): 363–373
20 Zhang Z, Ma X, Zhang P, Li Y, Wang S. Effect of treatment temperature on the crystal structure of activated carbon supported CuCl2-PdCl2 catalysts in the oxidative carbonylation of ethanol to diethyl carbonate. Journal of Molecular Catalysis A, Chemical , 2007, 266(1–2): 202–206
doi: 10.1016/j.molcata.2006.11.009
21 Liu T C, Chang C S. Vapor-phase oxidative carbonylation of ethanol over CuCl-PdCl2/C catalyst. Applied Catalysis A , 2006, 304: 7277
22 Besenhard J O. Cycling behaviour and corrosion of Li-Al electrodes in organic electrolytes. Journal of Electroanalytical Chemistry , 1978, 94(1): 77–81
doi: 10.1016/S0022-0728(78)80400-8
23 Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich D M. Aluminum negative electrode in lithium ion batteries. Journal of Power Sources , 2001, 97–98: 185–187
doi: 10.1016/S0378-7753(01)00616-4
24 Perentzis G, Horopanitis E E, Papadimitriou L. Effect of multivalent cation substitution on the capacity fading of lithium manganese spinel cathodes. Ionics , 2006, 12(4–5): 269–274
doi: 10.1007/s11581-006-0045-z
25 Neumair S C, Vanicek S, Kaindl R, T?bbens D M, Wurst K, Huppertz H. High-pressure synthesis and crystal structure of the lithium borate HP-LiB3O5. Journal of Solid State Chemistry , 2011, 184(9): 2490–2497
doi: 10.1016/j.jssc.2011.07.011
[1] Tahereh R. BASTAMI,Mohammad H. ENTEZARI,Chiwai KWONG,Shizhang QIAO. Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn)[J]. Front. Chem. Sci. Eng., 2014, 8(3): 378-385.
[2] Lu WANG, Changgong MENG, Wei MA. Preparation of lithium ion-sieve and utilizing in recovery of lithium from seawater[J]. Front Chem Eng Chin, 2009, 3(1): 65-67.
[3] WANG Feng, ZHAO Ning, LI Junping, XIAO Fukui, WEI Wei, SUN Yuhan. Non-equilibrium model for catalytic distillation process [J]. Front. Chem. Sci. Eng., 2008, 2(4): 379-384.
[4] JIANG Qi, CHENG Jiye, GAO Zhiqin. Direct synthesis of dimethyl carbonate over rare earth oxide supported catalyst[J]. Front. Chem. Sci. Eng., 2007, 1(3): 300-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed